A164055 Triangular numbers that are one plus a perfect square.
1, 10, 325, 11026, 374545, 12723490, 432224101, 14682895930, 498786237505, 16944049179226, 575598885856165, 19553418069930370, 664240615491776401, 22564627508650467250, 766533094678624110085, 26039560591564569275626
Offset: 1
Examples
10 is in this sequence because it is a triangular number A000217(4) and is equal to a square plus 1: 10 = 3^2 + 1.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..500
- K. B. Subramaniam, Almost Square Triangular Numbers, The Fibonacci Quarterly, Vol. 37, No. 3 (1999), pp. 194-197.
- Index entries for linear recurrences with constant coefficients, signature (35,-35,1).
Crossrefs
Programs
-
Haskell
a164055 n = a164055_list !! (n-1) a164055_list = 1 : 10 : 325 : zipWith (+) a164055_list (map (* 35) $ tail $ zipWith (-) (tail a164055_list) a164055_list) -- Reinhard Zumkeller, Apr 29 2012
-
Mathematica
LinearRecurrence[{35,-35,1}, {1,10,325}, 50] (* G. C. Greubel, Sep 09 2017 *)
-
PARI
my(x='x+O('x^50)); Vec(x*(1-25*x+10*x^2)/((1-x)*(x^2-34*x+1))) \\ G. C. Greubel, Sep 09 2017
Formula
From R. J. Mathar, Sep 22 2009: (Start)
a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3).
G.f.: x*(1-25*x+10*x^2)/((1-x)*(x^2-34*x+1)). (End)
a(n) = (14 + 9*(17+12*sqrt(2))^(1-n) - 9*(-17+12*sqrt(2))*(17+12*sqrt(2))^n) / 32. - Colin Barker, Mar 23 2019
a(n) = 9 * A001110(n) + 1 (Subramaniam, 1999). - Amiram Eldar, Jan 13 2022
Extensions
Comment molded into formula by R. J. Mathar, Sep 22 2009
Comments