cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164068 Number of reduced words of length n in Coxeter group on 35 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.

Original entry on oeis.org

1, 35, 1190, 40460, 1375640, 46771760, 1590239245, 54068114100, 1838315192175, 62502693168300, 2125090773290100, 72253059281172000, 2456603097196693830, 83524474080352031265, 2839831057104956921160, 96554219846263616159415
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170754, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    CoefficientList[Series[(t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(561*t^6 - 33*t^5 - 33*t^4 - 33*t^3 - 33*t^2 - 33*t + 1), {t,0,50}], t] (* G. C. Greubel, Sep 09 2017 *)
    coxG[{6,561,-33}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 27 2018 *)
  • PARI
    t='t+O('t^50); Vec((t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(561*t^6 - 33*t^5 - 33*t^4 - 33*t^3 - 33*t^2 - 33*t + 1)) \\ G. C. Greubel, Sep 09 2017

Formula

G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(561*t^6 - 33*t^5 - 33*t^4 - 33*t^3 - 33*t^2 - 33*t + 1).