A164070 Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
1, 37, 1332, 47952, 1726272, 62145792, 2237247846, 80540898480, 2899471482810, 104380942332240, 3757712806199520, 135277620783782400, 4869992899598197770, 175319692235303773500, 6311507043063165819750
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..640
- Index entries for linear recurrences with constant coefficients, signature (35,35,35,35,35,-630).
Programs
-
GAP
a:=[37, 1332, 47952, 1726272, 62145792, 2237247846];; for n in [7..30] do a[n]:=35*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -630*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 16 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-36*t+665*t^6-630*t^7) )); // G. C. Greubel, Aug 16 2019 -
Maple
seq(coeff(series((1+t)*(1-t^6)/(1-36*t+665*t^6-630*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 16 2019
-
Mathematica
CoefficientList[Series[(1+t)*(1-t^6)/(1-36*t+665*t^6-630*t^7), {t,0,30}], t] (* G. C. Greubel, Sep 09 2017 *) coxG[{6, 630, -35}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 16 2019 *)
-
PARI
my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-36*t+665*t^6-630*t^7)) \\ G. C. Greubel, Sep 09 2017
-
Sage
def A164070_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1+t)*(1-t^6)/(1-36*t+665*t^6-630*t^7)).list() A164070_list(30) # G. C. Greubel, Aug 16 2019
Formula
G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(630*t^6 - 35*t^5 - 35*t^4 - 35*t^3 - 35*t^2 - 35*t + 1).
a(n) = -630*a(n-6) + 35*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 05 2021
Comments