A164091 Number of reduced words of length n in Coxeter group on 41 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
1, 41, 1640, 65600, 2624000, 104960000, 4198399180, 167935934400, 6717436064820, 268697390145600, 10747893507936000, 429915656401920000, 17196622899456671580, 687864781713487950000, 27514585897949409744420
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..620
- Index entries for linear recurrences with constant coefficients, signature (39, 39, 39, 39, 39, -780).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^6)/(1-40*x+819*x^6-780*x^7) )); // G. C. Greubel, Apr 25 2019 -
Mathematica
coxG[{6,780,-39}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 25 2015 *) CoefficientList[Series[(1+x)*(1-x^6)/(1-40*x+819*x^6-780*x^7), {x,0,20}], x] (* G. C. Greubel, Apr 25 2019 *)
-
PARI
my(x='x+O('x^20)); Vec((1+x)*(1-x^6)/(1-40*x+819*x^6-780*x^7)) \\ G. C. Greubel, Apr 25 2019
-
Sage
((1+x)*(1-x^6)/(1-40*x+819*x^6-780*x^7)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019
Formula
G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(780*t^6 - 39*t^5 - 39*t^4 - 39*t^3 - 39*t^2 - 39*t + 1).
G.f.: (1+x)*(1-x^6)/(1 -40*x +819*x^6 -780*x^7). - G. C. Greubel, Apr 25 2019
Comments