cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164114 Numbers k such that Chowla(k) + phi(k) is prime.

Original entry on oeis.org

3, 6, 10, 12, 20, 22, 24, 44, 46, 54, 58, 66, 68, 70, 78, 80, 82, 84, 88, 90, 106, 116, 120, 136, 138, 154, 156, 160, 166, 168, 174, 178, 184, 186, 188, 190, 192, 212, 226, 234, 246, 250, 252, 258, 262, 270, 284, 286, 300, 306, 318, 320, 328, 330, 332, 336, 346, 352, 356
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 10 2009

Keywords

Comments

Indices such that the sum of the nontrivial divisors and of the Euler totient function at that index is prime.

Examples

			n=3 is in the sequence because Chowla(3) + phi(3) = 0 + 2 = 2 (a prime);
n=6 is in the sequence because Chowla(6) + phi(5) = 5 + 2 = 7 (a prime).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..400] | IsPrime((SumOfDivisors(n)+EulerPhi(n))-n-1)]; // Vincenzo Librandi, Sep 12 2017
  • Maple
    A048050 := proc(n) if n = 1 then 0; else numtheory[sigma](n)-n-1 ; fi; end:
    A000010 := proc(n) numtheory[phi](n) ; end: isA164114 := proc(n) isprime( A000010(n)+A048050(n)) ; end:
    for n from 1 to 400 do if isA164114(n) then printf("%d,",n): fi; od: # R. J. Mathar, Aug 27 2009
  • Mathematica
    f[n_] := Plus @@ Divisors[n] - n - 1; Select[Range[100], PrimeQ[f[#] + EulerPhi[#]] &] (* G. C. Greubel, Sep 11 2017 *)
  • PARI
    isok(n) = isprime(sigma(n)+eulerphi(n)-n-1); \\ Michel Marcus, Sep 12 2017
    

Formula

{k: A048050(k)+A000010(k) in A000040}.

Extensions

34 and 60 removed, 54 inserted by R. J. Mathar, Aug 27 2009