A164123 Partial sums of A162436.
1, 4, 7, 16, 25, 52, 79, 160, 241, 484, 727, 1456, 2185, 4372, 6559, 13120, 19681, 39364, 59047, 118096, 177145, 354292, 531439, 1062880, 1594321, 3188644, 4782967, 9565936, 14348905, 28697812, 43046719, 86093440, 129140161, 258280324, 387420487, 774840976, 1162261465
Offset: 1
Examples
For n = 3, a(3) = 7. The binomial coefficients of the 7th row of Pascal's Triangle are 1 7 21 35 35 21 7 1 and every 3rd element is a multiple of 3. - _Thomas M. Green_, Apr 03 2013
References
- Thomas M. Green, Prime Patterns in Pascal's Triangle, paper in review process, 2013.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Barry Brent, On the Constant Terms of Certain Laurent Series, Preprints (2023) 2023061164.
- Index entries for linear recurrences with constant coefficients, signature (1,3,-3).
Programs
-
Magma
T:=[ n le 2 select 2*n-1 else 3*Self(n-2): n in [1..33] ]; [ n eq 1 select T[1] else Self(n-1)+T[n]: n in [1..#T]];
-
Mathematica
Accumulate[Transpose[NestList[{Last[#],3*First[#]}&,{1,3},40]][[1]]] (* Harvey P. Dale, Feb 17 2012 *)
-
PARI
a(n) = (2+n%2)*3^(n\2)-2 \\ Charles R Greathouse IV, Jul 15 2011
Formula
a(n) = A038754(n+1) - 2.
a(n) = 3*a(n-2) + 4 for n > 2; a(1) = 1, a(2) = 4.
a(n) = (5 - (-1)^n)*3^(1/4*(2*n - 1 + (-1)^n))/2 - 2.
G.f.: x*(1 + 3*x)/((1 - x)*(1 - 3*x^2)).
E.g.f.: 2*(cosh(sqrt(3)*x) - cosh(x)) + sqrt(3)*sinh(sqrt(3)*x) - 2*sinh(x). - Stefano Spezia, Dec 31 2022
Extensions
Incorrect formula removed by Stefano Spezia, Dec 31 2022
Comments