A164130 Sums s of squares of three consecutive primes, such that s-+2 are primes.
195, 5739, 18459, 32259, 33939, 60291, 74019, 169491, 187131, 244899, 276819, 388179, 783531, 902139, 3588339, 5041491, 5145819, 5193051, 8687091, 9637491, 10227291, 10910019, 11341491, 11757339, 14834379, 15354651, 16115091
Offset: 1
Keywords
Examples
5^2 + 7^2 + 11^2 = 195 is a sum of the squared consecutive primes 5, 7 and 11, and 193 and 197 are primes, so 195 is a member of the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
q:= 2: r:= 3: R:= NULL: count:= 0: while count < 100 do p:= q; q:= r; r:= nextprime(r); s:= p^2+q^2+r^2; if isprime(s-2) and isprime(s+2) then count:= count+1; R:= R,s; fi; od: R; # Robert Israel, Apr 21 2023
-
Mathematica
lst={};Do[p=Prime[n]^2+Prime[n+1]^2+Prime[n+2]^2;If[PrimeQ[p-2]&&PrimeQ[p+2], AppendTo[lst,p]],{n,8!}];lst
Formula
Extensions
Comment turned into example by R. J. Mathar, Aug 27 2009
Comments