cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164131 Numbers k such that k^2 == 2 (mod 31).

Original entry on oeis.org

8, 23, 39, 54, 70, 85, 101, 116, 132, 147, 163, 178, 194, 209, 225, 240, 256, 271, 287, 302, 318, 333, 349, 364, 380, 395, 411, 426, 442, 457, 473, 488, 504, 519, 535, 550, 566, 581, 597, 612, 628, 643, 659, 674, 690, 705, 721, 736, 752, 767, 783, 798, 814
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2009

Keywords

Comments

Sequences of the type n^2 == 2 (mod m) are basically defined for each m of A057126. See A047341 (m=7), A113804 (m=14), A155449 (m=17), A155450 (m=23), A158803 (m=41) etc. - R. J. Mathar, Aug 26 2009

Examples

			At n= 4, a(4)=(31-1+186)/4=54. At n=5, a(5)=(31+1+248)/4=70.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[850],Mod[#^2,31]==2&]  (* Harvey P. Dale, Feb 04 2011 *)
  • PARI
    isok(k) = Mod(k, 31)^2 == 2; \\ Michel Marcus, Nov 22 2022

Formula

a(n) = a(n-1)+a(n-2)-a(n-3).
a(n) = (31+(-1)^(n-1)+62(n-1))/4.
G.f.: x*(8+15*x+8*x^2)/((1+x)*(x-1)^2). - R. J. Mathar, Aug 26 2009
a(n) = 31*(n-1)-a(n-1) with n>1, a(1)=8. - Vincenzo Librandi, Nov 30 2010
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(15*Pi/62)*Pi/31. - Amiram Eldar, Feb 28 2023

Extensions

Entries checked by R. J. Mathar, Aug 26 2009