cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164135 Numbers k such that k^2 == 2 (mod 47).

Original entry on oeis.org

7, 40, 54, 87, 101, 134, 148, 181, 195, 228, 242, 275, 289, 322, 336, 369, 383, 416, 430, 463, 477, 510, 524, 557, 571, 604, 618, 651, 665, 698, 712, 745, 759, 792, 806, 839, 853, 886, 900, 933, 947, 980, 994, 1027, 1041, 1074, 1088, 1121, 1135, 1168, 1182
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2009

Keywords

Comments

Numbers congruent to {7, 40} mod 47. - Amiram Eldar, Feb 26 2023

Programs

  • Magma
    [(47+19*(-1)^n+94*(n-1))/4: n in [1..60]]; // Vincenzo Librandi, Apr 06 2013
  • Maple
    A164135:=n->(47+19*(-1)^n+94*(n-1))/4: seq(A164135(n), n=1..100); # Wesley Ivan Hurt, Mar 30 2017
  • Mathematica
    Select[Range[1200], Mod[#^2, 47] == 2 &] (* Vincenzo Librandi, Apr 06 2013 *)
    Select[Range[2000],PowerMod[#,2,47]==2&] (* or *) LinearRecurrence[ {1,1,-1},{7,40,54},60] (* Harvey P. Dale, Sep 29 2013 *)

Formula

a(n) = a(n-1)+a(n-2)-a(n-3) for n>3.
a(n) = (47+19*(-1)^n+94*(n-1))/4.
G.f.: x*(7+33*x+7*x^2)/((1+x)*(x-1)^2). - R. J. Mathar, Aug 26 2009
Sum_{n>=1} (-1)^(n+1)/a(n) = cot(7*Pi/47)*Pi/47. - Amiram Eldar, Feb 26 2023

Extensions

Edited by R. J. Mathar, Aug 26 2009