A164135 Numbers k such that k^2 == 2 (mod 47).
7, 40, 54, 87, 101, 134, 148, 181, 195, 228, 242, 275, 289, 322, 336, 369, 383, 416, 430, 463, 477, 510, 524, 557, 571, 604, 618, 651, 665, 698, 712, 745, 759, 792, 806, 839, 853, 886, 900, 933, 947, 980, 994, 1027, 1041, 1074, 1088, 1121, 1135, 1168, 1182
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Magma
[(47+19*(-1)^n+94*(n-1))/4: n in [1..60]]; // Vincenzo Librandi, Apr 06 2013
-
Maple
A164135:=n->(47+19*(-1)^n+94*(n-1))/4: seq(A164135(n), n=1..100); # Wesley Ivan Hurt, Mar 30 2017
-
Mathematica
Select[Range[1200], Mod[#^2, 47] == 2 &] (* Vincenzo Librandi, Apr 06 2013 *) Select[Range[2000],PowerMod[#,2,47]==2&] (* or *) LinearRecurrence[ {1,1,-1},{7,40,54},60] (* Harvey P. Dale, Sep 29 2013 *)
Formula
a(n) = a(n-1)+a(n-2)-a(n-3) for n>3.
a(n) = (47+19*(-1)^n+94*(n-1))/4.
G.f.: x*(7+33*x+7*x^2)/((1+x)*(x-1)^2). - R. J. Mathar, Aug 26 2009
Sum_{n>=1} (-1)^(n+1)/a(n) = cot(7*Pi/47)*Pi/47. - Amiram Eldar, Feb 26 2023
Extensions
Edited by R. J. Mathar, Aug 26 2009
Comments