A164267 A Fibonacci convolution.
0, 1, 2, 7, 16, 46, 114, 309, 792, 2101, 5456, 14356, 37468, 98281, 256998, 673323, 1761984, 4614226, 12078110, 31624285, 82787980, 216750601, 567446112, 1485616392, 3889356696, 10182528721, 26658108074, 69791991919, 182717549872
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,3,-4,1)
Programs
-
Magma
I:=[0,1,2,7]; [n le 4 select I[n] else 2*Self(n-1)+3*Self(n-2)-4*Self(n-3)+Self(n-4): n in [1..30]]; // Vincenzo Librandi, Sep 13 2017
-
Mathematica
LinearRecurrence[{2,3,-4,1},{0,1,2,7},30] (* Harvey P. Dale, Jul 12 2011 *) CoefficientList[Series[x / ((1 + x - x^2) (1 - 3 x + x^2)), {x, 0, 33}], x] (* Vincenzo Librandi, Sep 13 2017 *)
-
PARI
x='x+O('x^50); concat([0], Vec(x/((1+x-x^2)*(1-3*x+x^2)))) \\ G. C. Greubel, Sep 12 2017
Formula
G.f.: x/((1+x-x^2)(1-3x+x^2)).
a(n) = Sum_{k=0..n} (-1)^k*F(k+1)*F(2(n-k)).
a(n) = Sum_{k=0..n} C(n,k)*F(k+1)*(1-(-1)^(n-k))/2.
a(n) = 2*a(n-1) + 3*a(n-2) - 4*a(n-3) + a(n-4).