cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164267 A Fibonacci convolution.

Original entry on oeis.org

0, 1, 2, 7, 16, 46, 114, 309, 792, 2101, 5456, 14356, 37468, 98281, 256998, 673323, 1761984, 4614226, 12078110, 31624285, 82787980, 216750601, 567446112, 1485616392, 3889356696, 10182528721, 26658108074, 69791991919, 182717549872
Offset: 0

Views

Author

Paul Barry, Aug 11 2009

Keywords

Programs

  • Magma
    I:=[0,1,2,7]; [n le 4 select I[n] else 2*Self(n-1)+3*Self(n-2)-4*Self(n-3)+Self(n-4): n in [1..30]]; // Vincenzo Librandi, Sep 13 2017
  • Mathematica
    LinearRecurrence[{2,3,-4,1},{0,1,2,7},30] (* Harvey P. Dale, Jul 12 2011 *)
    CoefficientList[Series[x / ((1 + x - x^2) (1 - 3 x + x^2)), {x, 0, 33}], x] (* Vincenzo Librandi, Sep 13 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(x/((1+x-x^2)*(1-3*x+x^2)))) \\ G. C. Greubel, Sep 12 2017
    

Formula

G.f.: x/((1+x-x^2)(1-3x+x^2)).
a(n) = Sum_{k=0..n} (-1)^k*F(k+1)*F(2(n-k)).
a(n) = Sum_{k=0..n} C(n,k)*F(k+1)*(1-(-1)^(n-k))/2.
a(n) = 2*a(n-1) + 3*a(n-2) - 4*a(n-3) + a(n-4).
a(n) = (A122367(n) - A039834(n-1))/2. - R. J. Mathar, Aug 17 2009