cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164277 Number of reduced words of length n in Coxeter group on 44 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.

Original entry on oeis.org

1, 44, 1892, 81356, 3498308, 150427244, 6468370546, 278139892800, 11960013642192, 514280511441312, 22114058759539824, 950904387665438976, 40888882692839511330, 1758221698790838894228, 75603521996953503778764
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170763, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[44, 1892, 81356, 3498308, 150427244, 6468370546];; for n in [7..30] do a[n]:=42*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -903*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 16 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-43*t+945*t^6-903*t^7) )); // G. C. Greubel, Aug 16 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^6)/(1-43*t+945*t^6-903*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 16 2019
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^6)/(1-43*t+945*t^6-903*t^7), {t,0,30}], t] (* G. C. Greubel, Sep 12 2017 *)
    coxG[{6, 903, -42}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 16 2019 *)
  • PARI
    my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-43*t+945*t^6-903*t^7)) \\ G. C. Greubel, Sep 12 2017
    
  • Sage
    def A164277_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^6)/(1-43*t+945*t^6-903*t^7)).list()
    A164277_list(30) # G. C. Greubel, Aug 16 2019
    

Formula

G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(903*t^6 - 42*t^5 - 42*t^4 - 42*t^3 - 42*t^2 - 42*t + 1).
a(n) = -903*a(n-6) + 42*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 11 2021