A164292 Binary sequence identifying the twin primes (characteristic function of twin primes: 1 if n is a twin prime else 0).
0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Index entries for characteristic functions [From _Reinhard Zumkeller_, Mar 29 2010]
Programs
-
Haskell
a164292 1 = 0 a164292 2 = 0 a164292 n = signum (a010051' n * (a010051' (n - 2) + a010051' (n + 2))) -- Reinhard Zumkeller, Feb 03 2014
-
Mathematica
Table[(PrimePi[n] - PrimePi[n - 1]) * Ceiling[(PrimePi[n + 2] - PrimePi[n + 1] + PrimePi[n - 2] - PrimePi[n - 3])/2], {n, 100}] (* Wesley Ivan Hurt, Jan 31 2014 *) Table[If[PrimeQ[n]&&AnyTrue[n+{2,-2},PrimeQ],1,0],{n,120}] (* Harvey P. Dale, Jan 04 2025 *)
Formula
a(n) = c(n) * ceiling(( c(n+2) + c(n-2) )/2), where c is the prime characteristic. - Wesley Ivan Hurt, Jan 31 2014
Comments