A164299 a(n) = ((1+4*sqrt(2))*(3+sqrt(2))^n + (1-4*sqrt(2))*(3-sqrt(2))^n)/2.
1, 11, 59, 277, 1249, 5555, 24587, 108637, 479713, 2117819, 9348923, 41268805, 182170369, 804140579, 3549650891, 15668921293, 69165971521, 305313380075, 1347718479803, 5949117218293, 26260673951137, 115920223178771
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-7).
Crossrefs
Programs
-
Magma
Z
:=PolynomialRing(Integers()); N :=NumberField(x^2-2); S:=[ ((1+4*r)*(3+r)^n+(1-4*r)*(3-r)^n)/2: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 17 2009 -
Mathematica
LinearRecurrence[{6,-7}, {1,11}, 50] (* or *) CoefficientList[Series[(1 + 5*x)/(1 - 6*x + 7*x^2), {x,0,50}], x] (* G. C. Greubel, Sep 12 2017 *)
-
PARI
my(x='x+O('x^50)); Vec((1+5*x)/(1-6*x+7*x^2)) \\ G. C. Greubel, Sep 12 2017
-
Sage
[( (1+5*x)/(1-6*x+7*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Mar 12 2021
Formula
a(n) = 6*a(n-1) - 7*a(n-2) for n > 1; a(0) = 1, a(1) = 11.
G.f.: (1+5*x)/(1-6*x+7*x^2).
E.g.f.: (cosh(sqrt(2)*x) + 4*sqrt(2)*sinh(sqrt(2)*x))*exp(3*x). - G. C. Greubel, Sep 12 2017
From G. C. Greubel, Mar 12 2021: (Start)
a(n) = (1/2)*Sum_{k=0..n} binomial(n,k)*2^(n-k)*(5*Q(k) + 4*Q(k-1)), where Q(n) = Pell-Lucas(n) = A002203(n). (End)
Extensions
Edited and extended beyond a(5) by Klaus Brockhaus, Aug 17 2009
Comments