A081185
8th binomial transform of (0,1,0,2,0,4,0,8,0,16,...).
Original entry on oeis.org
0, 1, 16, 194, 2112, 21764, 217280, 2127112, 20562432, 197117968, 1879016704, 17842953248, 168988216320, 1597548359744, 15083504344064, 142288071200896, 1341431869882368, 12641049503662336, 119088016125890560
Offset: 0
-
[n le 2 select n-1 else 16*Self(n-1)-62*Self(n-2): n in [1..25]]; // Vincenzo Librandi, Aug 07 2013
-
m:=30; S:=series( x/(1-16*x+62*x^2), x, m+1):
seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 12 2021
-
Join[{a=0,b=1},Table[c=16*b-62*a;a=b;b=c,{n,40}]] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2011 *)
CoefficientList[Series[x/(1-16x+62x^2), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 07 2013 *)
LinearRecurrence[{16,-62},{0,1},30] (* Harvey P. Dale, Sep 24 2013 *)
-
[( x/(1-16*x+62*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Mar 12 2021
A164298
a(n) = ((1+4*sqrt(2))*(2+sqrt(2))^n + (1-4*sqrt(2))*(2-sqrt(2))^n)/2.
Original entry on oeis.org
1, 10, 38, 132, 452, 1544, 5272, 18000, 61456, 209824, 716384, 2445888, 8350784, 28511360, 97343872, 332352768, 1134723328, 3874187776, 13227304448, 45160842240, 154188760064, 526433355776, 1797355902976, 6136556900352, 20951515795456, 71532949381120
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 12 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+4*r)*(2+r)^n+(1-4*r)*(2-r)^n)/2: n in [0..27] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 17 2009
-
m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+6*x)/(1-4*x+2*x^2) )); // G. C. Greubel, Dec 14 2018
-
a:=n->((1+4*sqrt(2))*(2+sqrt(2))^n+(1-4*sqrt(2))*(2-sqrt(2))^n)/2: seq(floor(a(n)),n=0..25); # Muniru A Asiru, Dec 15 2018
-
LinearRecurrence[{4,-2}, {1,10}, 50] (* or *) CoefficientList[Series[(1 + 6*x)/(1 - 4*x + 2*x^2), {x,0,50}], x] (* G. C. Greubel, Sep 12 2017 *)
-
my(x='x+O('x^50)); Vec((1+6*x)/(1-4*x+2*x^2)) \\ G. C. Greubel, Sep 12 2017
-
[( (1+6*x)/(1-4*x+2*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Dec 14 2018; Mar 12 2021
A164600
a(n) = 18*a(n-1) - 79*a(n-2) for n > 1; a(0) = 1, a(1) = 17.
Original entry on oeis.org
1, 17, 227, 2743, 31441, 349241, 3802499, 40854943, 434991553, 4602307457, 48477201539, 509007338599, 5332433173201, 55772217368297, 582637691946467, 6081473282940943, 63438141429166081, 661450156372654961
Offset: 0
-
[ n le 2 select 16*n-15 else 18*Self(n-1)-79*Self(n-2): n in [1..18] ];
-
m:=30; S:=series( (1-x)/(1-18*x+79*x^2), x, m+1):
seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 12 2021
-
LinearRecurrence[{18,-79},{1,17},30] (* Harvey P. Dale, Oct 30 2013 *)
-
my(x='x+O('x^50)); Vec((1-x)/(1-18*x+79*x^2)) \\ G. C. Greubel, Aug 11 2017
-
[( (1-x)/(1-18*x+79*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Mar 12 2021
A164300
a(n) = ((1+4*sqrt(2))*(4+sqrt(2))^n + (1-4*sqrt(2))*(4-sqrt(2))^n)/2.
Original entry on oeis.org
1, 12, 82, 488, 2756, 15216, 83144, 452128, 2453008, 13294272, 72012064, 389976704, 2111644736, 11433484032, 61904845952, 335169991168, 1814692086016, 9825156811776, 53195565289984, 288012326955008
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 12 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+4*r)*(4+r)^n+(1-4*r)*(4-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 17 2009
-
LinearRecurrence[{8,-14},{1,12},30] (* Harvey P. Dale, Apr 13 2012 *)
-
my(x='x+O('x^50)); Vec((1+4*x)/(1-8*x+14*x^2)) \\ G. C. Greubel, Sep 13 2017
-
[( (1+4*x)/(1-8*x+14*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Mar 12 2021
A164301
a(n) = ((1+4*sqrt(2))*(5+sqrt(2))^n + (1-4*sqrt(2))*(5-sqrt(2))^n)/2.
Original entry on oeis.org
1, 13, 107, 771, 5249, 34757, 226843, 1469019, 9472801, 60940573, 391531307, 2513679891, 16131578849, 103501150997, 663985196443, 4259325491499, 27321595396801, 175251467663533, 1124117982508907, 7210396068827811, 46249247090573249, 296653361322692837
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 12 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+4*r)*(5+r)^n+(1-4*r)*(5-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 17 2009
-
LinearRecurrence[{10,-23},{1,13},20] (* Harvey P. Dale, Oct 15 2015 *)
-
my(x='x+O('x^50)); Vec((1+3*x)/(1-10*x+23*x^2)) \\ G. C. Greubel, Sep 13 2017
-
[( (1+3*x)/(1-10*x+23*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Mar 12 2021
A164598
a(n) = 12*a(n-1) - 34*a(n-2), for n > 1, with a(0) = 1, a(1) = 14.
Original entry on oeis.org
1, 14, 134, 1132, 9028, 69848, 531224, 3999856, 29936656, 223244768, 1661090912, 12342768832, 91636134976, 679979479424, 5044125163904, 37410199666432, 277422140424448, 2057118896434688, 15253073982785024, 113094845314640896
Offset: 0
-
[ n le 2 select 13*n-12 else 12*Self(n-1)-34*Self(n-2): n in [1..30] ];
-
m:=30; S:=series( (1+2*x)/(1-12*x+34*x^2), x, m+1):
seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 11 2021
-
LinearRecurrence[{12,-34}, {1,14}, 30] (* G. C. Greubel, Aug 11 2017 *)
-
my(x='x+O('x^30)); Vec((1+2*x)/(1-12*x+34*x^2)) \\ G. C. Greubel, Aug 11 2017
-
[( (1+2*x)/(1-12*x+34*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Mar 11 2021
A164599
a(n) = 14*a(n-1) - 47*a(n-2), for n > 1, with a(0) = 1, a(1) = 15.
Original entry on oeis.org
1, 15, 163, 1577, 14417, 127719, 1110467, 9543745, 81420481, 691330719, 5851867459, 49433600633, 417032638289, 3515077706295, 29610553888547, 249339102243793, 2099051398651393, 17667781775661231, 148693529122641763
Offset: 0
-
[ n le 2 select 14*n-13 else 14*Self(n-1)-47*Self(n-2): n in [1..30] ];
-
m:=30; S:=series( (1+x)/(1-14*x+47*x^2), x, m+1):
seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 11 2021
-
LinearRecurrence[{14,-47}, {1,15}, 30] (* G. C. Greubel, Aug 11 2017 *)
-
my(x='x+O('x^30)); Vec((1+x)/(1-14*x+47*x^2)) \\ G. C. Greubel, Aug 11 2017
-
def A164599_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)/(1-14*x+47*x^2) ).list()
A164599_list(30) # G. C. Greubel, Mar 11 2021
Showing 1-7 of 7 results.
Comments