A081179
3rd binomial transform of (0,1,0,2,0,4,0,8,0,16,...).
Original entry on oeis.org
0, 1, 6, 29, 132, 589, 2610, 11537, 50952, 224953, 993054, 4383653, 19350540, 85417669, 377052234, 1664389721, 7346972688, 32431108081, 143157839670, 631929281453, 2789470811028, 12313319895997, 54353623698786
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Sergio Falcon, Iterated Binomial Transforms of the k-Fibonacci Sequence, British Journal of Mathematics & Computer Science, 4 (22): 2014.
- Yassine Otmani, The 2-Pascal Triangle and a Related Riordan Array, J. Int. Seq. (2025) Vol. 28, Issue 3, Art. No. 25.3.5. See p. 12.
- Index entries for linear recurrences with constant coefficients, signature (6,-7).
-
I:=[0, 1]; [n le 2 select I[n] else 6*Self(n-1)-7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 06 2013
-
f:= gfun:-rectoproc({a(n) = 6*a(n-1)-7*a(n-2), a(0)=0, a(1)=1},a(n),remember):
map(f, [$0..50]); # Robert Israel, Mar 15 2016
-
CoefficientList[Series[x/(1-6 x +7 x^2), {x,0,30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
LinearRecurrence[{6,-7}, {0,1}, 41] (* G. C. Greubel, Jan 14 2024 *)
-
[lucas_number1(n,6,7) for n in range(0, 23)] # Zerinvary Lajos, Apr 22 2009
A164298
a(n) = ((1+4*sqrt(2))*(2+sqrt(2))^n + (1-4*sqrt(2))*(2-sqrt(2))^n)/2.
Original entry on oeis.org
1, 10, 38, 132, 452, 1544, 5272, 18000, 61456, 209824, 716384, 2445888, 8350784, 28511360, 97343872, 332352768, 1134723328, 3874187776, 13227304448, 45160842240, 154188760064, 526433355776, 1797355902976, 6136556900352, 20951515795456, 71532949381120
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 12 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+4*r)*(2+r)^n+(1-4*r)*(2-r)^n)/2: n in [0..27] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 17 2009
-
m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+6*x)/(1-4*x+2*x^2) )); // G. C. Greubel, Dec 14 2018
-
a:=n->((1+4*sqrt(2))*(2+sqrt(2))^n+(1-4*sqrt(2))*(2-sqrt(2))^n)/2: seq(floor(a(n)),n=0..25); # Muniru A Asiru, Dec 15 2018
-
LinearRecurrence[{4,-2}, {1,10}, 50] (* or *) CoefficientList[Series[(1 + 6*x)/(1 - 4*x + 2*x^2), {x,0,50}], x] (* G. C. Greubel, Sep 12 2017 *)
-
my(x='x+O('x^50)); Vec((1+6*x)/(1-4*x+2*x^2)) \\ G. C. Greubel, Sep 12 2017
-
[( (1+6*x)/(1-4*x+2*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Dec 14 2018; Mar 12 2021
A164600
a(n) = 18*a(n-1) - 79*a(n-2) for n > 1; a(0) = 1, a(1) = 17.
Original entry on oeis.org
1, 17, 227, 2743, 31441, 349241, 3802499, 40854943, 434991553, 4602307457, 48477201539, 509007338599, 5332433173201, 55772217368297, 582637691946467, 6081473282940943, 63438141429166081, 661450156372654961
Offset: 0
-
[ n le 2 select 16*n-15 else 18*Self(n-1)-79*Self(n-2): n in [1..18] ];
-
m:=30; S:=series( (1-x)/(1-18*x+79*x^2), x, m+1):
seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 12 2021
-
LinearRecurrence[{18,-79},{1,17},30] (* Harvey P. Dale, Oct 30 2013 *)
-
my(x='x+O('x^50)); Vec((1-x)/(1-18*x+79*x^2)) \\ G. C. Greubel, Aug 11 2017
-
[( (1-x)/(1-18*x+79*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Mar 12 2021
A164299
a(n) = ((1+4*sqrt(2))*(3+sqrt(2))^n + (1-4*sqrt(2))*(3-sqrt(2))^n)/2.
Original entry on oeis.org
1, 11, 59, 277, 1249, 5555, 24587, 108637, 479713, 2117819, 9348923, 41268805, 182170369, 804140579, 3549650891, 15668921293, 69165971521, 305313380075, 1347718479803, 5949117218293, 26260673951137, 115920223178771
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 12 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+4*r)*(3+r)^n+(1-4*r)*(3-r)^n)/2: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 17 2009
-
LinearRecurrence[{6,-7}, {1,11}, 50] (* or *) CoefficientList[Series[(1 + 5*x)/(1 - 6*x + 7*x^2), {x,0,50}], x] (* G. C. Greubel, Sep 12 2017 *)
-
my(x='x+O('x^50)); Vec((1+5*x)/(1-6*x+7*x^2)) \\ G. C. Greubel, Sep 12 2017
-
[( (1+5*x)/(1-6*x+7*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Mar 12 2021
A164300
a(n) = ((1+4*sqrt(2))*(4+sqrt(2))^n + (1-4*sqrt(2))*(4-sqrt(2))^n)/2.
Original entry on oeis.org
1, 12, 82, 488, 2756, 15216, 83144, 452128, 2453008, 13294272, 72012064, 389976704, 2111644736, 11433484032, 61904845952, 335169991168, 1814692086016, 9825156811776, 53195565289984, 288012326955008
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 12 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+4*r)*(4+r)^n+(1-4*r)*(4-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 17 2009
-
LinearRecurrence[{8,-14},{1,12},30] (* Harvey P. Dale, Apr 13 2012 *)
-
my(x='x+O('x^50)); Vec((1+4*x)/(1-8*x+14*x^2)) \\ G. C. Greubel, Sep 13 2017
-
[( (1+4*x)/(1-8*x+14*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Mar 12 2021
A164301
a(n) = ((1+4*sqrt(2))*(5+sqrt(2))^n + (1-4*sqrt(2))*(5-sqrt(2))^n)/2.
Original entry on oeis.org
1, 13, 107, 771, 5249, 34757, 226843, 1469019, 9472801, 60940573, 391531307, 2513679891, 16131578849, 103501150997, 663985196443, 4259325491499, 27321595396801, 175251467663533, 1124117982508907, 7210396068827811, 46249247090573249, 296653361322692837
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 12 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+4*r)*(5+r)^n+(1-4*r)*(5-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 17 2009
-
LinearRecurrence[{10,-23},{1,13},20] (* Harvey P. Dale, Oct 15 2015 *)
-
my(x='x+O('x^50)); Vec((1+3*x)/(1-10*x+23*x^2)) \\ G. C. Greubel, Sep 13 2017
-
[( (1+3*x)/(1-10*x+23*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Mar 12 2021
A164598
a(n) = 12*a(n-1) - 34*a(n-2), for n > 1, with a(0) = 1, a(1) = 14.
Original entry on oeis.org
1, 14, 134, 1132, 9028, 69848, 531224, 3999856, 29936656, 223244768, 1661090912, 12342768832, 91636134976, 679979479424, 5044125163904, 37410199666432, 277422140424448, 2057118896434688, 15253073982785024, 113094845314640896
Offset: 0
-
[ n le 2 select 13*n-12 else 12*Self(n-1)-34*Self(n-2): n in [1..30] ];
-
m:=30; S:=series( (1+2*x)/(1-12*x+34*x^2), x, m+1):
seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 11 2021
-
LinearRecurrence[{12,-34}, {1,14}, 30] (* G. C. Greubel, Aug 11 2017 *)
-
my(x='x+O('x^30)); Vec((1+2*x)/(1-12*x+34*x^2)) \\ G. C. Greubel, Aug 11 2017
-
[( (1+2*x)/(1-12*x+34*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Mar 11 2021
A164599
a(n) = 14*a(n-1) - 47*a(n-2), for n > 1, with a(0) = 1, a(1) = 15.
Original entry on oeis.org
1, 15, 163, 1577, 14417, 127719, 1110467, 9543745, 81420481, 691330719, 5851867459, 49433600633, 417032638289, 3515077706295, 29610553888547, 249339102243793, 2099051398651393, 17667781775661231, 148693529122641763
Offset: 0
-
[ n le 2 select 14*n-13 else 14*Self(n-1)-47*Self(n-2): n in [1..30] ];
-
m:=30; S:=series( (1+x)/(1-14*x+47*x^2), x, m+1):
seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 11 2021
-
LinearRecurrence[{14,-47}, {1,15}, 30] (* G. C. Greubel, Aug 11 2017 *)
-
my(x='x+O('x^30)); Vec((1+x)/(1-14*x+47*x^2)) \\ G. C. Greubel, Aug 11 2017
-
def A164599_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)/(1-14*x+47*x^2) ).list()
A164599_list(30) # G. C. Greubel, Mar 11 2021
A081184
7th binomial transform of (0,1,0,2,0,4,0,8,0,16,...).
Original entry on oeis.org
0, 1, 14, 149, 1428, 12989, 114730, 995737, 8548008, 72872473, 618458246, 5233409213, 44200191420, 372832446869, 3142245259426, 26468308629121, 222870793614672, 1876180605036721, 15791601170624510, 132901927952017253
Offset: 0
-
[n le 2 select n-1 else 14*Self(n-1)-47*Self(n-2): n in [1..25]]; // Vincenzo Librandi, Aug 07 2013
-
CoefficientList[Series[x/(1-14*x+47*x^2), {x,0,30}], x] (* Vincenzo Librandi, Aug 07 2013 *)
LinearRecurrence[{14,-47},{0,1},30] (* Harvey P. Dale, Nov 12 2013 *)
-
A081184=BinaryRecurrenceSequence(14,-47,0,1)
[A081184(n) for n in range(31)] # G. C. Greubel, Jan 14 2024
A153593
a(n) = ((9 + sqrt(2))^n - (9 - sqrt(2))^n)/(2*sqrt(2)).
Original entry on oeis.org
1, 18, 245, 2988, 34429, 383670, 4186169, 45041112, 480032665, 5082340122, 53559541661, 562566880260, 5895000053461, 61667217421758, 644304909368225, 6725778192309168, 70163919621475249, 731614075994130210
Offset: 1
Al Hakanson (hawkuu(AT)gmail.com), Dec 29 2008
-
Z:= PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((9+r)^n-(9-r)^n)/(2*r): n in [1..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Dec 31 2008
-
Join[{a=1,b=18},Table[c=18*b-79*a;a=b;b=c,{n,40}]] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *)
LinearRecurrence[{18,-79},{1,18},25] (* G. C. Greubel, Aug 22 2016 *)
Showing 1-10 of 11 results.
Comments