cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164306 Triangle read by rows: T(n, k) = k / gcd(k, n), 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 3, 4, 1, 1, 1, 1, 2, 5, 1, 1, 2, 3, 4, 5, 6, 1, 1, 1, 3, 1, 5, 3, 7, 1, 1, 2, 1, 4, 5, 2, 7, 8, 1, 1, 1, 3, 2, 1, 3, 7, 4, 9, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 1, 1, 1, 1, 5, 1, 7, 2, 3, 5, 11, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 12 2009

Keywords

Comments

Also the gcd of the coefficients of the partition polynomials (called 'De Moivre polynomials' by O'Sullivan, see link, Theorem 4.1). - Peter Luschny, Sep 20 2022

Examples

			From _Indranil Ghosh_, Feb 14 2017: (Start)
Triangle begins:
1,
1, 1,
1, 2, 1,
1, 1, 3, 1,
1, 2, 3, 4, 1,
1, 1, 1, 2, 5, 1,
1, 2, 3, 4, 5, 6, 1,
. . .
T(4,3) = 3 / gcd(3,4) = 3 / 1 = 3. (End)
		

Crossrefs

Programs

  • Maple
    seq(seq(k / igcd(n, k), k = 1..n), n = 1..13); # Peter Luschny, Sep 20 2022
  • Mathematica
    Flatten[Table[k/GCD[k,n],{n,20},{k,n}]] (* Harvey P. Dale, Jul 21 2013 *)
  • PARI
    for(n=0,10, for(k=1,n, print1(k/gcd(k,n), ", "))) \\ G. C. Greubel, Sep 13 2017

Formula

Sum of n-th row = A057661(n).
T(n, k) = A051537(n, k)/A054531(n, k). - Reinhard Zumkeller, Oct 30 2009