A164330 Number of reduced words of length n in Coxeter group on 45 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
1, 45, 1980, 87120, 3833280, 168664320, 7421229090, 326534036400, 14367495685950, 632169725893200, 27815464230602400, 1223880262963776000, 53850724390367020710, 2369431557254469630780, 104254974618644628784170
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..600
- Index entries for linear recurrences with constant coefficients, signature (43, 43, 43, 43, 43, -946).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^6)/(1-44*x+989*x^6-946*x^7) )); // G. C. Greubel, Apr 25 2019 -
Mathematica
CoefficientList[Series[(1+x)*(1-x^6)/(1-44*x+989*x^6-946*x^7), {x,0,20}], x] (* G. C. Greubel, Sep 14 2017, modified Apr 25 2019 *) coxG[{6, 946, -43}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 25 2019 *)
-
PARI
my(x='x+O('x^20)); Vec((1+x)*(1-x^6)/(1-44*x+989*x^6-946*x^7)) \\ G. C. Greubel, Sep 14 2017, modified Apr 25 2019
-
Sage
((1+x)*(1-x^6)/(1-44*x+989*x^6-946*x^7)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019
Formula
G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(946*t^6 - 43*t^5 - 43*t^4 - 43*t^3 - 43*t^2 - 43*t + 1).
G.f.: (1+x)*(1-x^6)/(1 -44*x +989*x^6 -946*x^7). - G. C. Greubel, Apr 25 2019
a(n) = -946*a(n-6) + 43*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 06 2021
Comments