A164350 Number of reduced words of length n in Coxeter group on 49 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
1, 49, 2352, 112896, 5419008, 260112384, 12485393256, 599298819840, 28766340643992, 1380784220911872, 66277636363782144, 3181326245942132736, 152703645428292064680, 7329774290465429385408, 351829132817899422588504, 16887796785286144959221568
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..590
- Index entries for linear recurrences with constant coefficients, signature (47, 47, 47, 47, 47, -1128).
Programs
-
GAP
a:=[49, 2352, 112896, 5419008, 260112384, 12485393256];; for n in [7..20] do a[n]:=47*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -1128*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 24 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^6)/(1-48*t+1175*t^6-1128*t^7) )); // G. C. Greubel, Aug 24 2019 -
Maple
seq(coeff(series((1+t)*(1-t^6)/(1-48*t+1175*t^6-1128*t^7), t, n+1), t, n), n = 0..20); # G. C. Greubel, Aug 24 2019
-
Mathematica
CoefficientList[Series[(1+t)*(1-t^6)/(1-48*t+1175*t^6-1128*t^7), {t, 0, 20}], t] (* G. C. Greubel, Sep 15 2017 *) coxG[{6, 1128, -47}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 24 2019 *)
-
PARI
my(t='t+O('t^20)); Vec((1+t)*(1-t^6)/(1-48*t+1175*t^6-1128*t^7)) \\ G. C. Greubel, Sep 15 2017
-
Sage
def A164350_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1+t)*(1-t^6)/(1-48*t+1175*t^6-1128*t^7)).list() A164350_list(20) # G. C. Greubel, Aug 24 2019
Formula
G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1128*t^6 - 47*t^5 - 47*t^4 - 47*t^3 - 47*t^2 - 47*t + 1).
a(n) = -1128*a(n-6) + 47*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 11 2021
Comments