A164510 First differences of A071904 (Odd composite numbers).
6, 6, 4, 2, 6, 2, 4, 6, 4, 2, 4, 2, 6, 2, 4, 6, 2, 4, 4, 2, 4, 2, 2, 4, 6, 6, 4, 2, 2, 2, 2, 2, 4, 4, 2, 6, 2, 2, 2, 6, 2, 4, 2, 4, 4, 2, 4, 2, 6, 2, 2, 2, 6, 6, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 6, 4, 2, 6, 2, 2, 2, 4, 2, 4, 2, 4, 2, 6, 2, 4, 6, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 6, 4, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 6
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Joel E. Cohen and Dexter Senft, Gaps of size 2, 4, and (conditionally) 6 between successive odd composite numbers occur infinitely often, Notes Num. Theor. Disc. Math. (2025) Vol. 31, No. 3, 494-503. See p. 495.
Crossrefs
Cf. A071904.
Programs
-
Mathematica
Differences@ Select[Range[1, 360, 2], CompositeQ] (* Michael De Vlieger, Aug 29 2025 *)
-
Python
from sympy import primepi, isprime def A164510(n): m, k = n, primepi(n+1) + n + (n+1>>1) while m != k: m, k = k, primepi(k) + n + (k>>1) for d in range(2, 7, 2): if not isprime(m+d): return d # Chai Wah Wu, Aug 02 2024
Comments