cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A071904 Odd composite numbers.

Original entry on oeis.org

9, 15, 21, 25, 27, 33, 35, 39, 45, 49, 51, 55, 57, 63, 65, 69, 75, 77, 81, 85, 87, 91, 93, 95, 99, 105, 111, 115, 117, 119, 121, 123, 125, 129, 133, 135, 141, 143, 145, 147, 153, 155, 159, 161, 165, 169, 171, 175, 177, 183, 185, 187, 189, 195, 201, 203, 205
Offset: 1

Views

Author

Shyam Sunder Gupta, Jun 12 2002

Keywords

Comments

Same as A014076 except for the initial term A014076(1)=1 (which is not a composite number).
Values of quadratic form (2x + 3)*(2y + 3) = 4xy + 6x + 6y + 9 for x, y >= 0. - Anton Joha, Jan 21 2001
Intersection of A002808 and A005408. - Reinhard Zumkeller, Oct 10 2011
Composite numbers n such that (n-1)^(n-1) == 1 (mod n). - Michel Lagneau, Feb 18 2012
There is a rectangular array of n dots (with both sides > 1) with a unique center point if and only if n is in this sequence. - Peter Woodward, Apr 21 2015
First differences <= 6. Cf. A164510. - Zak Seidov, Sep 22 2016
Let r(n) = (a(n)-1)/(a(n)+1) if a(n) mod 4 = 1, (a(n)+1)/(a(n)-1) otherwise; then Product_{n>=1} r(n) = (4/5) * (8/7) * (10/11) * (12/13) * (14/13) * ... = Pi/4. - Dimitris Valianatos, May 24 2017

Examples

			45 is in the sequence because it is odd and composite (45 = 3 * 3 * 5).
195 is in the sequence because it is odd and composite (195 = 3 * 5 * 13).
		

Crossrefs

Programs

  • Haskell
    a071904 n = a071904_list !! (n-1)
    a071904_list = filter odd a002808_list
    -- Reinhard Zumkeller, Oct 10 2011
    
  • Maple
    remove(isprime, [seq(2*i+1, i = 1 .. 1000)]); # Robert Israel, Apr 22 2015
    # alternative
    A071904 := proc(n) local a;
        if n = 1 then
            9;
        else
            for a from procname(n-1)+2 by 2 do
                if not isprime(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Sep 09 2015
  • Mathematica
    Select[Table[n, {n, 9, 300, 2}], !PrimeQ[#] &] (* Vladimir Joseph Stephan Orlovsky, Apr 16 2011 *)
    With[{upto = 200}, Complement[Range[9, upto, 2], Prime[Range[ PrimePi[ upto]]]]] (* Harvey P. Dale, Jan 24 2013 *)
    With[{upto = 200},oddsequence=Table[2n+1,{n,1,upto}];oddcomposites=Union[Flatten[Range[oddsequence^2,upto,2*oddsequence]]]] (* Ben Engelen, Feb 24 2016 *)
  • PARI
    is(n)=n%2 && !isprime(n) && n > 1 \\ Charles R Greathouse IV, Nov 24 2012
    
  • PARI
    lista(nn) = forcomposite(n=1, nn, if (n%2, print1(n, ", "))); \\ Michel Marcus, Sep 24 2016
    
  • Python
    from sympy import isprime
    def ok(n): return n > 3 and n%2 == 1 and not isprime(n)
    print(list(filter(ok, range(206)))) # Michael S. Branicky, Sep 15 2021
    
  • Python
    from sympy import primepi
    def A071904(n):
        if n == 1: return 9
        m, k = n, primepi(n) + n + (n>>1)
        while m != k:
            m, k = k, primepi(k) + n + (k>>1)
        return m # Chai Wah Wu, Jul 31 2024

Formula

A000035(a(n))*(1-A010051(a(n))) = 1; A020639(a(n)) = A162022(n). - Reinhard Zumkeller, Oct 10 2011
a(n) ~ 2n. - Charles R Greathouse IV, Jul 02 2013
More precisely, a(n) = 2n(1 + 2(1+o(1))/log(n)). - Vladimir Shevelev, Jan 07 2015

A306863 a(n) is the number of primes between the n-th and (n+1)-st odd composite numbers.

Original entry on oeis.org

2, 2, 1, 0, 2, 0, 1, 2, 1, 0, 1, 0, 2, 0, 1, 2, 0, 1, 1, 0, 1, 0, 0, 1, 2, 2, 1, 0, 0, 0, 0, 0, 1, 1, 0, 2, 0, 0, 0, 2, 0, 1, 0, 1, 1, 0, 1, 0, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 2, 1, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 2, 0, 0, 0, 1, 0, 0
Offset: 1

Views

Author

Zhandos Mambetaliyev, Mar 14 2019

Keywords

Examples

			The first few odd composite numbers are 9, 15, 21, 25, 27, 33, 35, 39, 45, 49. Between 9 and 15, there are two primes (11 and 13); between 15 and 21 there are also two primes (17 and 19); between 21 and 25 there is only one prime (23), etc.
		

Crossrefs

Cf. A071904, A000040, A001223 (differences between primes), A164510, A001097.

Programs

  • Mathematica
    Differences@ PrimePi@ Complement[Range[3, #, 2], Prime@ Range[2, PrimePi@ #]] &@ 300 (* Michael De Vlieger, Apr 21 2019 *)
    Differences[PrimePi/@Select[Range[3,301,2],CompositeQ]] (* Harvey P. Dale, Sep 16 2023 *)
  • PARI
    { b=9; for(i=6, 150, if(isprime(2*i-1)==0, print1(primepi(2*i-1)-primepi(b), ", "); b=2*i-1)) }
    
  • Python
    from itertools import count
    from sympy import primepi, isprime
    def A306863(n):
        if n == 1: return 2
        m, k = n, primepi(n) + n + (n>>1)
        while m != k:
            m, k = k, primepi(k) + n + (k>>1)
        return next(c for c in count(0) if not isprime(m+(c<<1)+2)) # Chai Wah Wu, Aug 02 2024
Showing 1-2 of 2 results.