cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Anton Joha

Anton Joha's wiki page.

Anton Joha has authored 8 sequences.

A181761 Start with 18; write down the sum of its digits; add last two terms; repeat.

Original entry on oeis.org

18, 9, 27, 9, 36, 9, 45, 9, 54, 9, 63, 9, 72, 9, 81, 9, 90, 9, 99, 18, 117, 9, 126, 9, 135, 9, 144, 9, 153, 9, 162, 9, 171, 9, 180, 9, 189, 18, 207, 9, 216, 9, 225, 9, 234, 9, 243, 9, 252, 9, 261, 9, 270, 9, 279, 18, 297, 18, 315, 9, 324, 9, 333, 9, 342, 9
Offset: 1

Author

Anton Joha, Nov 14 2010

Keywords

Examples

			a(1)=18; a(2)=1+8=9; a(3)=18+9=27, etc.
		

Crossrefs

Cf. A129888.

Programs

  • Mathematica
    NestList[{Total[#],Total[IntegerDigits[Total[#]]]}&,{18,9},40]// Flatten (* Harvey P. Dale, Nov 10 2016 *)

Formula

a(2n+1) = A016096(n+2). - Michel Marcus, Oct 31 2014

A119707 Number of distinct primes appearing in all partitions of n into prime parts.

Original entry on oeis.org

0, 1, 1, 1, 3, 2, 4, 3, 4, 4, 5, 4, 6, 5, 6, 6, 7, 6, 8, 7, 8, 8, 9, 8, 9, 9, 9, 9, 10, 9, 11, 10, 11, 11, 11, 11, 12, 11, 12, 12, 13, 12, 14, 13, 14, 14, 15, 14, 15, 15, 15, 15, 16, 15, 16, 16, 16, 16, 17, 16, 18, 17, 18, 18, 18, 18, 19, 18, 19, 19, 20, 19, 21, 20, 21, 21, 21, 21, 22
Offset: 1

Author

Anton Joha, Jun 10 2006

Keywords

Examples

			There is only 1 distinct prime number involved in the partitions of 4, namely 2 (in 2+2 = 4). The partition 3+1 does not count, as 1 is not a prime. So a(4)= 1.
There are 3 distinct primes involved in the partitions of 5 = 2+3, so a(5) = 3.
		

Crossrefs

Cf. A000720.

Programs

  • Mathematica
    f[n_] := If[OddQ@n, If[n == 3, 1, PrimePi@n], If[n == 2, 1, PrimePi[n - 2]]]; Array[f, 80] (* Robert G. Wilson v *)

Formula

When n = odd and >=5 then a(n) = pi(n) = A000720(n). When n = even and >=4 then a(n) = pi(n-2) = A000720(n-2)

Extensions

Edited and extended by Robert G. Wilson v, Jun 15 2006

A120353 Sum of 5 consecutive powers of 3, starting with a power of 9.

Original entry on oeis.org

121, 1089, 9801, 88209, 793881, 7144929, 64304361, 578739249, 5208653241, 46877879169, 421900912521, 3797108212689, 34173973914201, 307565765227809, 2768091887050281, 24912826983452529, 224215442851072761, 2017938985659654849, 18161450870936893641
Offset: 1

Author

Anton Joha, Jun 25 2006

Keywords

Comments

Always a square.

Examples

			a(2) = 3^2 + 3^3 + 3^4 + 3^5 + 3^6 = 121*(3^2) = 1089.
		

Programs

  • Magma
    [121*3^(2*n-2): n in [1..30]]; // Vincenzo Librandi, Jun 10 2011
    
  • Mathematica
    Total/@Select[Partition[3^Range[0,60],5,1],IntegerQ[Log[9, First[#]]]&] (* or *) Table[121 3^(2n-2),{n,30}] (* Harvey P. Dale, May 03 2011 *)
  • PARI
    a(n)=121*9^(n-1) \\ Charles R Greathouse IV, Jul 11 2016

Formula

a(n) = 121*3^(2n-2).

Extensions

Corrected and extended by Harvey P. Dale, May 03 2011

A120354 a(n) = 11*3^n.

Original entry on oeis.org

11, 33, 99, 297, 891, 2673, 8019, 24057, 72171, 216513, 649539, 1948617, 5845851, 17537553, 52612659, 157837977, 473513931, 1420541793, 4261625379, 12784876137, 38354628411, 115063885233, 345191655699, 1035574967097, 3106724901291, 9320174703873
Offset: 0

Author

Anton Joha, Jun 25 2006

Keywords

Comments

Square root of A120353.

Crossrefs

Programs

Formula

From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 3*a(n-1), n > 0; a(0)=11.
G.f.: 11/(1-3*x). (End)
a(n) = 11*A000244(n). - Michel Marcus, Sep 04 2013
E.g.f.: 11*exp(3*x). - Elmo R. Oliveira, Aug 16 2024

Extensions

Better definition from Tanya Khovanova, Jan 20 2007

A059324 Numbers n such that 6n + 5 is composite.

Original entry on oeis.org

5, 10, 12, 15, 19, 20, 23, 25, 26, 30, 33, 34, 35, 36, 40, 45, 47, 49, 50, 53, 54, 55, 56, 60, 61, 62, 65, 67, 68, 70, 72, 75, 78, 80, 82, 85, 87, 88, 89, 90, 91, 95, 96, 100, 101, 103, 104, 105, 110, 111, 114, 115, 117, 118, 120, 121, 122, 124, 125, 127, 129, 130
Offset: 1

Author

Anton Joha, Jan 26 2001

Keywords

Comments

Conjecture: There exists no pair of primes (p, q > p^2) such that q - p^2 = 6*n - 4 (see A138479). - Philippe LALLOUET (philip.lallouet(AT)orange.fr), Mar 20 2008

Examples

			a(3) = 12 because 6*12 + 5 = 77 is composite.
		

Crossrefs

Complement of A059325.
Cf. A138479.

Programs

  • Mathematica
    Select[Range[200],!PrimeQ[6#+5]&]  (* Harvey P. Dale, Mar 13 2011 *)
  • PARI
    isok(n) = ! isprime(6*n+5); \\ Michel Marcus, Jan 06 2017

Formula

a(n) = A046953(n-1) - 1.

Extensions

More terms from Henry Bottomley, Jan 29 2001

A059482 a(0)=1, a(n) = a(n-1) + 8*10^(n-1).

Original entry on oeis.org

1, 9, 89, 889, 8889, 88889, 888889, 8888889, 88888889, 888888889, 8888888889, 88888888889, 888888888889, 8888888888889, 88888888888889, 888888888888889, 8888888888888889, 88888888888888889, 888888888888888889, 8888888888888888889, 88888888888888888889, 888888888888888888889
Offset: 0

Author

Anton Joha, Feb 04 2001

Keywords

Comments

Related to the sum of Fibonacci-variants: Sum of the (Fibonacci numbers)/(10^n) = 0/(10^1) + 1/(10^2) + 1/(10^3) + 2/(10^4) + 3/(10^5) + 5/(10^6) + ... = 1/89. Sum of the (tribonacci numbers)/(10^(n+1)) = 1/889. Sum of the (tetranacci numbers)/(10^(n+2)) = 1/8889, etc. The denominators of those sums is the current sequence. The first one is of course 0.11111111111... = 1/9. - partially edited by Michel Marcus, Jan 27 2014
Let A be the Hessenberg matrix of the order n, defined by: A[1,j]=1, A[i,i]:=12, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^(n-1)*charpoly(A,2). - Milan Janjic, Feb 21 2010
Except for the initial term, these are the 9-automorphic numbers ending in 9. - Eric M. Schmidt, Aug 17 2012

Examples

			a(3) = (10^3)*(1000/1125) + (1/9) = (8000/9) + (1/9) = 889.
		

Crossrefs

Cf. A002282.

Programs

  • Mathematica
    Table[(8*10^n+1)/9, {n,0,50}] (* G. C. Greubel, May 15 2017 *)
  • PARI
    { a=1/5; for (n = 0, 200, a+=8*10^(n - 1); write("b059482.txt", n, " ", a); ) } \\ Harry J. Smith, Jun 27 2009
    
  • Python
    def a(n): return (8*10**n+1)//9 # Martin Gergov, Oct 20 2022

Formula

a(n) = (10^n)*(1000/1125) + (1/9).
a(n) = A002282(n) + 1 = (8*10^n + 1)/9.
a(n) = 10*a(n-1) - 1 with n > 0, a(0)=1. - Vincenzo Librandi, Aug 07 2010
G.f.: -(2*x-1) / ((x-1)*(10*x-1)). - Colin Barker, Feb 02 2013
a(n) = 10^n - Sum_{i=0..n-1} 10^i for n > 0. - Bruno Berselli, Jun 20 2013
E.g.f.: exp(x)*(1 + 8*exp(9*x))/9. - Stefano Spezia, Oct 25 2023

Extensions

More terms from Henry Bottomley, Feb 05 2001

A059325 Numbers n such that 6n + 5 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 11, 13, 14, 16, 17, 18, 21, 22, 24, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 46, 48, 51, 52, 57, 58, 59, 63, 64, 66, 69, 71, 73, 74, 76, 77, 79, 81, 83, 84, 86, 92, 93, 94, 97, 98, 99, 102, 106, 107, 108, 109, 112, 113, 116, 119, 123, 126
Offset: 1

Author

Anton Joha, Jan 26 2001

Keywords

Examples

			a(4)=3 because 6*3 + 1 = 19 is prime.
		

Crossrefs

Complement of A059324.

Programs

Extensions

More terms from Henry Bottomley, Jan 29 2001

A059425 Primes of form n^2 + 19n + 17.

Original entry on oeis.org

17, 37, 59, 83, 109, 137, 167, 199, 233, 269, 307, 347, 389, 433, 479, 577, 683, 739, 797, 857, 919, 983, 1049, 1117, 1187, 1259, 1409, 1487, 1567, 1733, 1907, 1997, 2089, 2377, 2477, 2579, 2683, 2789, 2897, 3119, 3467, 3709, 3833, 4217, 4349, 4483
Offset: 1

Author

Anton Joha, Jan 31 2001

Keywords

Comments

0<=n<=14 gives primes.

Examples

			a(3) = 83 = 3^2 + 19*3 + 17 is in the sequence because it is prime. a(15)=527 is not because 527 = 17*31.
		

Programs

  • Maple
    with(numtheory): for n from 0 to 300 do if isprime(n^2 + 19*n + 17) then printf(`%d,`,n^2 + 19*n + 17) fi; od:
  • Mathematica
    Select[Table[n^2+19n+17,{n,0,60}],PrimeQ] (* Harvey P. Dale, Jun 21 2011 *)

Extensions

More terms from James Sellers, Feb 03 2001