cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A186950 a(n) = n^2 - 47*n + 479.

Original entry on oeis.org

479, 433, 389, 347, 307, 269, 233, 199, 167, 137, 109, 83, 59, 37, 17, -1, -17, -31, -43, -53, -61, -67, -71, -73, -73, -71, -67, -61, -53, -43, -31, -17, -1, 17, 37, 59, 83, 109, 137, 167, 199, 233, 269, 307, 347, 389, 433, 479, 527, 577, 629, 683, 739, 797, 857
Offset: 0

Views

Author

Arkadiusz Wesolowski, Mar 01 2011

Keywords

Comments

a(n) are distinct primes for 0 <= n <= 14. There are 22 distinct (positive and negative) values of primes between a(0) = 479 and a(48) = 527.
For n < 15 and n > 32, the prime numbers of this sequence are in A059425. - Bruno Berselli, Mar 04 2011

Crossrefs

Programs

Formula

G.f.: (479 - 1004*x + 527*x^2)/(1-x)^3. - Bruno Berselli, Mar 05 2011
a(n+19) = -A126665(n). - Arkadiusz Wesolowski, Oct 24 2013
From Elmo R. Oliveira, Nov 02 2024: (Start)
E.g.f.: (479 - 46*x + x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A332884 a(n) = -n^2 + 21*n - 1.

Original entry on oeis.org

19, 37, 53, 67, 79, 89, 97, 103, 107, 109, 109, 107, 103, 97, 89, 79, 67, 53, 37, 19, -1, -23, -47, -73, -101, -131, -163, -197, -233, -271, -311, -353, -397, -443, -491, -541, -593, -647, -703, -761, -821, -883, -947, -1013, -1081, -1151, -1223, -1297, -1373, -1451, -1531, -1613
Offset: 1

Views

Author

Tamer Özsoy, Jul 02 2020

Keywords

Comments

All the positive numbers of the form -(x^2 - 21*x + 1) are primes. Compare A335984.

References

  • T. Özsoy, Visualization of Prime Numbers: Twin Prime Numbers, Ozsoy Triangle and Ozsoy Series, in A. Baki, B. Güven, and M. Güler, editors, Proc. 4th International Symposium of Turkish Computer and Mathematics Education, 26-Sep 28 2019, İzmir; pages 678-688.

Crossrefs

Programs

Formula

G.f.: (x^2 + 20*x - 19)/(x - 1)^3. - Jinyuan Wang, Jul 08 2020
Showing 1-2 of 2 results.