A138479 a(n) = smallest prime p such that 2*n + p^2 is another prime, or 0 if no such prime exists.
3, 3, 5, 3, 3, 5, 3, 5, 5, 3, 3, 7, 0, 3, 7, 3, 3, 5, 3, 7, 5, 3, 5, 5, 3, 3, 5, 0, 3, 7, 3, 3, 29, 0, 3, 5, 3, 5, 5, 3, 5, 5, 0, 3, 7, 3, 3, 19, 3, 3, 5, 3, 5, 7, 0, 5, 5, 0, 3, 11, 3, 5, 5, 3, 3, 5, 0, 11, 5, 3, 3, 7, 0, 3, 7, 0, 3, 5, 3, 11, 7, 3, 5, 5, 3, 3, 5, 0, 7, 7, 3, 3, 5, 3, 3, 7, 0, 11, 5, 0
Offset: 1
Keywords
Examples
11=2+3^2 hence a(1)=3, 13=4+3^2 hence a(2)=3, 31=6+5^2 hence a(3)=5.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Near-Square Prime
Programs
-
Maple
a:= proc(n) local p; if irem(n, 3)=1 and not isprime(2*n+9) then 0 else p:=2; do p:= nextprime(p); if isprime(2*n+p^2) then return p fi od fi end: seq(a(n), n=1..100); # Alois P. Heinz, Jun 16 2014
-
Mathematica
a = {}; Do[ p = 0; While[ (! PrimeQ[ 2*n + Prime[ p + 1 ]2 ]) && (p < 1000), p++ ]; If[ p < 1000, AppendTo[ a, Prime[ p + 1 ] ], AppendTo[ a, 0 ] ], {n, 1, 150} ]; a (* Artur Jasinski, Mar 26 2008 *) a[n_]:=If[Mod[n,3]!=1,(For[m=1,!PrimeQ[2n+Prime[m]^2],m++ ]; Prime[m]),If[ !PrimeQ[2n+9],0,3]];Table[a[n],{n,100}] (* Farideh Firoozbakht, Mar 28 2008 *)
Extensions
More terms from Artur Jasinski and Farideh Firoozbakht, Mar 26 2008
Comments