A138685 Numbers k such that there is no prime of the form 2k + p^2 for any prime p.
13, 28, 34, 43, 55, 58, 67, 73, 76, 88, 97, 100, 103, 106, 118, 133, 139, 145, 148, 157, 160, 163, 166, 178, 181, 184, 193, 199, 202, 208, 214, 223, 232, 238, 244, 253, 259, 262, 265, 268, 271, 283, 286, 298, 301, 307, 310, 313, 328, 331, 340, 343, 349, 352
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a = {}; Do[p = 0; While[(! PrimeQ[2*n + Prime[p + 1]^2]) && (p < 10000), p++ ]; If[p < 10000,[null], AppendTo[a, n]], {n, 1, 550}]; a Select[Range[400],Mod[#,3]==1&&CompositeQ[2#+9]&] (* Harvey P. Dale, Feb 23 2017 *)
Formula
Based on comments from Zak Seidov, Don Reble and M. F. Hasler, we now know that these are the numbers k such that k == 1 (mod 3) and 2k + 9 is composite. - N. J. A. Sloane, Apr 20 2008
Comments