cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A023221 Primes p such that 6*p + 5 is also prime.

Original entry on oeis.org

2, 3, 7, 11, 13, 17, 29, 31, 37, 41, 43, 59, 71, 73, 79, 83, 97, 107, 109, 113, 137, 139, 151, 157, 163, 181, 191, 193, 197, 227, 239, 241, 251, 263, 269, 277, 307, 311, 317, 337, 347, 349, 367, 373, 389, 401, 409, 421, 431, 443, 449, 479, 487, 499, 503, 541, 557, 577, 587
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A059325.

Programs

  • Magma
    [n: n in PrimesUpTo(100) | IsPrime(6*n+5)]; // Vincenzo Librandi, Nov 20 2010
  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[6 # + 5] &] (* Vincenzo Librandi, May 20 2014 *)

A056956 Numbers n such that 6n+1 and 6n+5 are both primes.

Original entry on oeis.org

1, 2, 3, 6, 7, 11, 13, 16, 17, 18, 21, 27, 32, 37, 38, 46, 51, 52, 58, 63, 66, 73, 76, 77, 81, 83, 102, 107, 112, 123, 126, 128, 137, 142, 143, 146, 147, 151, 156, 161, 168, 181, 182, 202, 213, 216, 217, 237, 238, 241, 247, 248, 258, 261, 263, 266, 268, 277, 282
Offset: 1

Views

Author

Henry Bottomley, Jul 18 2000

Keywords

Comments

Note that if prime p>3 then p mod 6 = 1 or 5.

Examples

			a(2)=2 since 6*2+1=13 and 6*2+5=17 are both prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[300], And @@ PrimeQ /@ ({1, 5} + 6#) &] (* Ray Chandler, Jun 29 2008 *)
  • PARI
    is(n)=isprime(n*6+1)&&isprime(n*6+5) \\ M. F. Hasler, Apr 05 2017

Formula

a(n) = (A023200(n+1)-1)/6 = (A046132(n+1)-5)/6 = A047847(n+1)/3
a(n) = floor(A087679(n+1)/6). - M. F. Hasler, Apr 05 2017

Extensions

Edited by N. J. A. Sloane, Nov 07 2006

A059324 Numbers n such that 6n + 5 is composite.

Original entry on oeis.org

5, 10, 12, 15, 19, 20, 23, 25, 26, 30, 33, 34, 35, 36, 40, 45, 47, 49, 50, 53, 54, 55, 56, 60, 61, 62, 65, 67, 68, 70, 72, 75, 78, 80, 82, 85, 87, 88, 89, 90, 91, 95, 96, 100, 101, 103, 104, 105, 110, 111, 114, 115, 117, 118, 120, 121, 122, 124, 125, 127, 129, 130
Offset: 1

Views

Author

Anton Joha, Jan 26 2001

Keywords

Comments

Conjecture: There exists no pair of primes (p, q > p^2) such that q - p^2 = 6*n - 4 (see A138479). - Philippe LALLOUET (philip.lallouet(AT)orange.fr), Mar 20 2008

Examples

			a(3) = 12 because 6*12 + 5 = 77 is composite.
		

Crossrefs

Complement of A059325.
Cf. A138479.

Programs

  • Mathematica
    Select[Range[200],!PrimeQ[6#+5]&]  (* Harvey P. Dale, Mar 13 2011 *)
  • PARI
    isok(n) = ! isprime(6*n+5); \\ Michel Marcus, Jan 06 2017

Formula

a(n) = A046953(n-1) - 1.

Extensions

More terms from Henry Bottomley, Jan 29 2001

A023288 Primes that remain prime through 3 iterations of function f(x) = 6x + 5.

Original entry on oeis.org

2, 11, 13, 31, 71, 83, 151, 163, 193, 197, 317, 347, 373, 503, 577, 811, 911, 919, 1049, 1051, 1201, 1423, 1721, 1907, 2089, 2243, 2543, 2719, 2963, 3529, 3583, 3607, 3797, 4091, 4153, 4217, 4243, 4409, 4591, 4637, 4783, 5209, 5557, 5783, 5849, 5923, 6091
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 6*p+5, 36*p+35 and 216*p+215 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023221, A023257, and A059325.

Programs

  • Magma
    [n: n in [1..150000] | IsPrime(n) and IsPrime(6*n+5) and IsPrime(36*n+35) and IsPrime(216*n+215)] // Vincenzo Librandi, Aug 04 2010

A307561 Numbers k such that both 6*k - 1 and 6*k + 5 are prime.

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 9, 14, 17, 18, 22, 28, 29, 32, 38, 39, 42, 43, 44, 52, 58, 59, 64, 74, 77, 84, 93, 94, 98, 99, 107, 108, 109, 113, 137, 143, 147, 157, 158, 162, 163, 169, 182, 183, 184, 197, 198, 203, 204, 213, 214, 217, 227, 228, 238, 239, 247, 248, 249, 259, 267, 268, 269, 312, 317, 318, 329, 333, 344
Offset: 1

Views

Author

Sally Myers Moite, Apr 14 2019

Keywords

Comments

There are 146 terms below 10^3, 831 terms below 10^4, 5345 terms below 10^5, 37788 terms below 10^6 and 280140 terms below 10^7.
Prime pairs differing by 6 are called "sexy" primes. Other prime pairs with difference 6 are of the form 6n + 1 and 6n + 7.
Numbers in this sequence are those which are not 6cd + c - d - 1, 6cd + c - d, 6cd - c + d - 1 or 6cd - c + d, that is, they are not (6c - 1)d + c - 1, (6c - 1)d + c, (6c + 1)d - c - 1 or (6c + 1)d - c.

Examples

			a(2) = 2, so 6(2) - 1 = 11 and 6(2) + 5 = 17 are both prime.
		

Crossrefs

Primes differing from each other by 6 are A023201, A046117.
Similar sequences for twin primes are A002822, A067611, for "cousin" primes A056956, A186243.
Intersection of A024898 and A059325.
Cf. also A307562, A307563.

Programs

  • Mathematica
    Select[Range[500], PrimeQ[6# - 1] && PrimeQ[6# + 5] &] (* Alonso del Arte, Apr 14 2019 *)
  • PARI
    is(k) = isprime(6*k-1) && isprime(6*k+5); \\ Jinyuan Wang, Apr 20 2019

A023317 Primes that remain prime through 4 iterations of function f(x) = 6x + 5.

Original entry on oeis.org

11, 13, 83, 151, 317, 373, 1721, 3529, 4153, 4243, 4637, 4783, 5209, 5849, 5923, 6661, 8431, 10903, 11329, 14519, 16183, 16979, 20149, 26669, 27509, 27827, 29873, 29947, 32987, 33637, 33937, 34919, 35099, 35543, 36277, 36691, 38069, 38461, 41651, 47407
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 6*p+5, 36*p+35, 216*p+215 and 1296*p+1295 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023221, A023257, A023288, and A059325.

Programs

  • Magma
    [n: n in [1..1000000] | IsPrime(n) and IsPrime(6*n+5) and IsPrime(36*n+35) and IsPrime(216*n+215) and IsPrime(1296*n+1295)] // Vincenzo Librandi, Aug 04 2010
  • Mathematica
    if4Q[n_]:=AllTrue[Rest[NestList[6#+5&,n,4]],PrimeQ]; Select[Prime[ Range[ 5000]],if4Q] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 10 2018 *)

A173178 Numbers k such that 2*k+3 is a prime of the form 3*A024893(m) + 2.

Original entry on oeis.org

1, 4, 7, 10, 13, 19, 22, 25, 28, 34, 40, 43, 49, 52, 55, 64, 67, 73, 82, 85, 88, 94, 97, 112, 115, 118, 124, 127, 130, 133, 139, 145, 154, 157, 172, 175, 178, 190, 193, 199, 208, 214, 220, 223, 229, 232, 238, 244, 250, 253, 259, 277, 280, 283, 292, 295, 298, 307, 319
Offset: 1

Views

Author

Eric Desbiaux, Feb 11 2010

Keywords

Comments

With the Bachet-Bézout theorem implicating Gauss Lemma and the Fundamental Theorem of Arithmetic,
for k > 1, k = 2*a + 3*b (a and b integers)
first type
A001477 = (2*A080425) + (3*A008611)
A000040 = (2*A039701) + (3*A157966)
A024893 Numbers k such that 3*k + 2 is prime
A034936 Numbers k such that 3*k + 4 is prime
OR second type
A001477 = (2*A028242) + (3*A059841)
A000040 = (2*A067076) + (3*1)
A067076 Numbers k such that 2*k + 3 is prime
k a b OR a b
-- - - - -
0 0 0 0 0
1 - - - -
2 1 0 1 0
3 0 1 0 1
4 2 0 2 0
5 1 1 1 1
6 0 2 3 0
7 2 1 2 1
8 1 2 4 0
9 0 3 3 1
10 2 2 5 0
11 1 3 4 1
12 0 4 6 0
13 2 3 5 1
14 1 4 7 0
15 0 5 6 1
...
2* 1 + 3 OR 3* 1 + 2 = 5;
2* 4 + 3 OR 3* 3 + 2 = 11;
2* 7 + 3 OR 3* 5 + 2 = 17;
2*10 + 3 OR 3* 7 + 2 = 23;
2*13 + 3 OR 3* 9 + 2 = 29;
2*19 + 3 OR 3*13 + 2 = 41;
2*22 + 3 OR 3*15 + 2 = 47;
2*25 + 3 OR 3*17 + 2 = 53;
2*28 + 3 OR 3*19 + 2 = 59.
A024893 Numbers k such that 3k+2 is prime.
A007528 Primes of the form 6k-1.
A024898 Positive integers k such that 6k-1 is prime.
1, 4, 7, 10, 13, 19, ... = (3*(4*A024898 - A024893) - 7)/2 = (A112774 - 3*A024893 - 5)/2 = A003627 - (3*A024893 - 5)/2.

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 320], PrimeQ[(p = 2*# + 3)] && Mod[p, 3] == 2 &] (* Amiram Eldar, Jul 30 2024 *)

Formula

a(n) = 3*A059325(n) + 1. - Amiram Eldar, Jul 30 2024

Extensions

Data corrected and extended by Amiram Eldar, Jul 30 2024

A023345 Primes that remain prime through 5 iterations of function f(x) = 6x + 5.

Original entry on oeis.org

13, 4637, 5849, 5923, 16183, 16979, 34919, 36277, 67003, 79337, 115571, 159739, 175141, 245753, 249133, 305717, 341569, 359353, 383833, 437263, 455317, 498497, 511519, 567121, 579961, 581699, 633797, 683831, 693431, 849197, 972197, 1022449
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 6*p+5, 36*p+35, 216*p+215, 1296*p+1295 and 7776*p+7775 are also primes. - Vincenzo Librandi, Aug 05 2010

Crossrefs

Subsequence of A023221, A023257, A023288, A023317, and A059325.

Programs

  • Magma
    [n: n in [1..10000000] | IsPrime(n) and IsPrime(6*n+5) and IsPrime(36*n+35) and IsPrime(216*n+215) and IsPrime(1296*n+1295) and IsPrime(7776*n+7775)] // Vincenzo Librandi, Aug 05 2010
  • Mathematica
    Select[Range[1100000],And@@PrimeQ[NestList[6#+5&,#,5]]&] (* Harvey P. Dale, Mar 31 2012 *)
Showing 1-8 of 8 results.