A164555 Numerators of the "original" Bernoulli numbers; also the numerators of the Bernoulli polynomials at x=1.
1, 1, 1, 0, -1, 0, 1, 0, -1, 0, 5, 0, -691, 0, 7, 0, -3617, 0, 43867, 0, -174611, 0, 854513, 0, -236364091, 0, 8553103, 0, -23749461029, 0, 8615841276005, 0, -7709321041217, 0, 2577687858367, 0, -26315271553053477373, 0, 2929993913841559, 0, -261082718496449122051
Offset: 0
Examples
From _Peter Luschny_, Aug 13 2017: (Start) Integral_{x=0..1} 1 = 1, Integral_{x=0..1} x = 1/2, Integral_{x=0..1} 2*x^2 - x = 1/6, Integral_{x=0..1} 6*x^3 - 6*x^2 + x = 0, Integral_{x=0..1} 24*x^4 - 36*x^3 + 14*x^2 - x = -1/30, Integral_{x=0..1} 120*x^5 - 240*x^4 + 150*x^3 - 30*x^2 + x = 0, ... Integral_{x=0..1} Sum_{k=0..n} (-1)^n*Stirling2(n,k)*k!*(-x)^k = Bernoulli(n). (End)
References
- Jacob Bernoulli, Ars Conjectandi, Basel: Thurneysen Brothers, 1713. See page 97.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 106-108.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..629
- Peter Luschny, Illustration of the first terms.
- Peter Luschny, The Bernoulli Manifesto, 2013.
- Tom Rike, Sums of powers and Bernoulli numbers.
Crossrefs
Programs
-
Haskell
a164555 n = a164555_list !! n a164555_list = 1 : map (numerator . sum) (zipWith (zipWith (%)) (zipWith (map . (*)) (tail a000142_list) a242179_tabf) a106831_tabf) -- Reinhard Zumkeller, Jul 04 2014
-
Maple
A164555 := proc(n) if n <= 2 then 1; else numer(bernoulli(n)) ; fi; end: # R. J. Mathar, Aug 26 2009 seq(numer(n!*coeff(series(t/(1-exp(-t)),t,n+2),t,n)),n=0..40); # Peter Luschny, Jun 17 2012
-
Mathematica
CoefficientList[ Series[ x/(1 - Exp[-x]), {x, 0, 40}], x]*Range[0, 40]! // Numerator (* Jean-François Alcover, Mar 04 2013 *) Table[Numerator[BernoulliB[n,1]], {n, 0, 40}] (* Vaclav Kotesovec, Jan 03 2021 *)
-
Sage
a = lambda n: bernoulli_polynomial(1,n).numerator() [a(n) for n in (0..40)] # Peter Luschny, Jan 09 2017
Formula
a(n) = numerator(B(n)) with B(n) = Sum_{k=0..n} (-1)^(n-k) * C(n+1, k+1) * S(n+k, k) / C(n+k, k) and S the Stirling set numbers. - Peter Luschny, Jun 25 2016
a(n) = numerator(n*EulerPolynomial(n-1, 1)/(2*(2^n-1))) for n>=1. - Peter Luschny, Sep 01 2017
From Artur Jasinski, Jan 01 2021: (Start)
a(n) = numerator(-2*cos(Pi*n/2)*Gamma(n+1)*zeta(n)/(2*Pi)^n) for n != 1.
a(n) = numerator(-n*zeta(1-n)) for n >= 1. In the case n = 0 take the limit. (End)
Extensions
Edited and extended by R. J. Mathar, Sep 03 2009
Name extended by Peter Luschny, Jan 09 2017
Comments