A164558 Numerators of the n-th term of the binomial transform of the original Bernoulli numbers.
1, 3, 13, 3, 119, 5, 253, 7, 239, 9, 665, 11, 32069, 13, 91, 15, 4543, 17, 58231, 19, -168011, 21, 857549, 23, -236298571, 25, 8553259, 27, -23749436669, 29, 8615841705665, 31, -7709321024897, 33, 2577687858571, 35, -26315271552984386533, 37, 2929993913841787
Offset: 0
Examples
Numerators of the polynomials b(n,x) at x=1 for n >= 0. The first few are: 1, 1/2 + x, 1/6 + x + x^2, (1/2)*x + (3/2)*x^2 + x^3, -1/30 + x^2 + 2*x^3 + x^4, -(1/6)*x +(5/3)*x^3 + (5/2)*x^4 + x^5, ... - _Peter Luschny_, Aug 18 2018
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..250
Programs
-
Magma
A164558:= func< n | Numerator((&+[(-1)^j*Binomial(n,j)*Bernoulli(j): j in [0..n]])) >; [A164558(n): n in [0..50]]; // G. C. Greubel, Feb 24 2023
-
Maple
read("transforms") : nmax := 40: a := BINOMIAL([seq(A164555(n)/A027642(n),n=0..nmax)]) : seq( numer(op(n,a)),n=1..nmax+1) ; # R. J. Mathar, Aug 26 2009 A164558 := n -> `if`(type(n, odd) and n > 1, n, numer((-1)^n*bernoulli(n,-1))): seq(A164558(n), n=0..50); # Peter Luschny, Jun 15 2012, revised Aug 18 2018
-
Mathematica
a[n_]:= Sum[(-1)^k*Binomial[n, k]*BernoulliB[k], {k,0,n}]//Numerator; Table[a[n], {n,0,50}] (* Jean-François Alcover, Aug 08 2012 *)
-
PARI
a(n) = numerator(subst(bernpol(n, x), x, 2)); \\ Michel Marcus, Mar 03 2020
-
SageMath
def A164558(n): return sum((-1)^j*binomial(n,j)*bernoulli(j) for j in range(n+1)).numerator() [A164558(n) for n in range(51)] # G. C. Greubel, Feb 24 2023
Formula
E.g.f. for a(n)/A027642: x/(exp(-x)*(1-exp(-x))). - Wolfdieter Lang, Oct 25 2011
Let b_{n}(x) = B_{n}(x) - 2*x*[x^(n-1)]B_{n}(x), then a(n) = numerator(b_{n}(1)). - Peter Luschny, Jun 15 2012
Numerators of the polynomials b(n,x) generated by exp(x*z)*z/(1-exp(-z)) evaluated x=1. b(n,x) are the Bernoulli polynomials B(n,x) with a different sign schema, b(n,x) = (-1)^n*B(n,-x) (see the example section). In other words: a(n) = numerator((-1)^n*Bernoulli(n,-1)). a(n) = n for odd n >= 3. - Peter Luschny, Aug 18 2018
Extensions
Edited and extended by R. J. Mathar, Aug 26 2009
Comments