cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164558 Numerators of the n-th term of the binomial transform of the original Bernoulli numbers.

Original entry on oeis.org

1, 3, 13, 3, 119, 5, 253, 7, 239, 9, 665, 11, 32069, 13, 91, 15, 4543, 17, 58231, 19, -168011, 21, 857549, 23, -236298571, 25, 8553259, 27, -23749436669, 29, 8615841705665, 31, -7709321024897, 33, 2577687858571, 35, -26315271552984386533, 37, 2929993913841787
Offset: 0

Views

Author

Paul Curtz, Aug 16 2009

Keywords

Comments

We start from the sequence A164555(i)/A027642(i) of the "original" Bernoulli numbers, i >= 0, and compute its binomial transform, which is the sequence of fractions 1, 3/2, 13/6, 3, 119/30, 5, 253/42, 7, 239/30, 9, ... The a(n) are the numerators of these fractions.
These fractions are also the successive values of Bernoulli(n,2). - N. J. A. Sloane, Nov 10 2009
(-1)^n*a(n)/A027642, with e.g.f. x/(exp(x)*(exp(x)-1)), gives the alternating row sums of the triangle of coefficients of the Bernoulli polynomials A053382/A053383 or A196838/A196839. - Wolfdieter Lang, Oct 25 2011

Examples

			Numerators of the polynomials b(n,x) at x=1 for n >= 0. The first few are: 1, 1/2 + x, 1/6 + x + x^2, (1/2)*x + (3/2)*x^2 + x^3, -1/30 + x^2 + 2*x^3 + x^4, -(1/6)*x +(5/3)*x^3 + (5/2)*x^4 + x^5, ... - _Peter Luschny_, Aug 18 2018
		

Crossrefs

Programs

  • Magma
    A164558:= func< n | Numerator((&+[(-1)^j*Binomial(n,j)*Bernoulli(j): j in [0..n]])) >;
    [A164558(n): n in [0..50]]; // G. C. Greubel, Feb 24 2023
    
  • Maple
    read("transforms") : nmax := 40: a := BINOMIAL([seq(A164555(n)/A027642(n),n=0..nmax)]) : seq( numer(op(n,a)),n=1..nmax+1) ; # R. J. Mathar, Aug 26 2009
    A164558 := n -> `if`(type(n, odd) and n > 1, n, numer((-1)^n*bernoulli(n,-1))):
    seq(A164558(n), n=0..50); # Peter Luschny, Jun 15 2012, revised Aug 18 2018
  • Mathematica
    a[n_]:= Sum[(-1)^k*Binomial[n, k]*BernoulliB[k], {k,0,n}]//Numerator;
    Table[a[n], {n,0,50}] (* Jean-François Alcover, Aug 08 2012 *)
  • PARI
    a(n) = numerator(subst(bernpol(n, x), x, 2)); \\ Michel Marcus, Mar 03 2020
    
  • SageMath
    def A164558(n): return sum((-1)^j*binomial(n,j)*bernoulli(j) for j in range(n+1)).numerator()
    [A164558(n) for n in range(51)] # G. C. Greubel, Feb 24 2023

Formula

E.g.f. for a(n)/A027642: x/(exp(-x)*(1-exp(-x))). - Wolfdieter Lang, Oct 25 2011
Let b_{n}(x) = B_{n}(x) - 2*x*[x^(n-1)]B_{n}(x), then a(n) = numerator(b_{n}(1)). - Peter Luschny, Jun 15 2012
Numerators of the polynomials b(n,x) generated by exp(x*z)*z/(1-exp(-z)) evaluated x=1. b(n,x) are the Bernoulli polynomials B(n,x) with a different sign schema, b(n,x) = (-1)^n*B(n,-x) (see the example section). In other words: a(n) = numerator((-1)^n*Bernoulli(n,-1)). a(n) = n for odd n >= 3. - Peter Luschny, Aug 18 2018

Extensions

Edited and extended by R. J. Mathar, Aug 26 2009