cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164568 Primes p such that 9*p-10 and 9*p+10 are prime numbers.

Original entry on oeis.org

3, 7, 11, 13, 29, 41, 53, 59, 67, 97, 109, 179, 223, 239, 263, 353, 389, 409, 461, 463, 557, 601, 613, 631, 673, 757, 773, 839, 857, 937, 967, 977, 1019, 1163, 1277, 1301, 1327, 1471, 1627, 1753, 1789, 1877, 1879, 2027, 2087, 2237, 2251, 2269, 2311, 2351
Offset: 1

Views

Author

Keywords

Examples

			9*3-10=17, 9*3+10=37, ...
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2500) |IsPrime(9*p-10) and IsPrime(9*p+10)]; // Vincenzo Librandi, Jun 30 2016
  • Maple
    filter:= n -> isprime(n) and isprime(9*n-10) and isprime(9*n+10):
    select(filter, [seq(i,i=3..1000,2)]); # Robert Israel, Jun 29 2016
  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[9*p-10]&&PrimeQ[9*p+10],AppendTo[lst,p]],{n,2*6!}];lst
    Select[Prime[Range[400]], PrimeQ[9 # - 10] && PrimeQ[9 # + 10] &] (* Vincenzo Librandi, Jun 30 2016 *)
    Select[Prime[Range[400]],AllTrue[9#+{10,-10},PrimeQ]&] (* Harvey P. Dale, Dec 23 2023 *)
  • PARI
    forprime(p=3,1e4,if(isprime(9*p-10)&&isprime(9*p+10),print1(p",")))
    

Extensions

Edited by Charles R Greathouse IV, Nov 02 2009