A164570 Primes p such that 8*p-3 and 8*p+3 are also prime numbers.
2, 5, 7, 13, 47, 103, 107, 127, 163, 233, 293, 337, 383, 433, 443, 467, 503, 673, 677, 733, 797, 877, 1087, 1093, 1153, 1217, 1223, 1307, 1637, 1933, 2053, 2087, 2137, 2423, 2477, 2543, 2633, 2687, 2857, 2917, 3163, 3373, 3407, 3467, 3767, 3793, 3877
Offset: 1
Examples
For p=2, 8*2-3=13 and 8*2+3=19 are prime numbers, which adds p=2 to the sequence For p=5, 8*5-3=37 and 8*5+3=43 are prime numbers, which adds p=5 to the sequence.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
[p: p in PrimesUpTo(3000) | IsPrime(8*p-3) and IsPrime(8*p+3)]; // Vincenzo Librandi, Apr 09 2013
-
Mathematica
lst={};Do[p=Prime[n];If[PrimeQ[8*p-3]&&PrimeQ[8*p+3],AppendTo[lst,p]], {n,7!}];lst Select[Prime[Range[1000]], And@@PrimeQ/@{8 # + 3, 8 # - 3}&] (* Vincenzo Librandi, Apr 09 2013 *) Select[Prime[Range[1000]],AllTrue[8#+{3,-3},PrimeQ]&] (* Harvey P. Dale, May 05 2023 *)
Extensions
Comments turned into examples by R. J. Mathar, Aug 26 2009
Comments