cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A164619 Integers of the form A164577(k)/3.

Original entry on oeis.org

4, 15, 54, 75, 132, 169, 320, 459, 735, 847, 1104, 1250, 1764, 2175, 2904, 3179, 3780, 4107, 5200, 6027, 7425, 7935, 9024, 9604, 11492, 12879, 15162, 15979, 17700, 18605, 21504, 23595, 26979, 28175, 30672, 31974, 36100, 39039, 43740, 45387, 48804
Offset: 1

Views

Author

Keywords

Comments

The sequence members are the third of the average of a set of smallest cubes, if integer.

Examples

			A third of the average of the first cube, A164577(1)/3=1/3, is not an integer and does not contribute to the sequence.
A third of the average of the first two cubes, A164577(2)/3=4, is an integer and defines a(1)=4 of the sequence.
		

Crossrefs

Programs

  • Mathematica
    s=0;lst={};Do[a=(s+=(n^3)/3)/n;If[Mod[a,1]==0,AppendTo[lst,a]],{n,2*5!}]; lst
    LinearRecurrence[{2,-1,-1,2,-1,2,-4,2,2,-4,2,-1,2,-1,-1,2,-1},{4,15,54,75,132,169,320,459,735,847,1104,1250,1764,2175,2904,3179,3780},50] (* Harvey P. Dale, Apr 06 2016 *)
  • PARI
    Vec(x*(x^14 +x^13 +16*x^12 +10*x^11 +47*x^10 -22*x^9 +61*x^8 +10*x^7 +88*x^6 +8*x^5 +43*x^4 -14*x^3 +28*x^2 +7*x +4) / ((x -1)^4*(x +1)^3*(x^2 -x +1)^3*(x^2 +x +1)^2) + O(x^100)) \\ Colin Barker, Oct 27 2014

Formula

a(n) = +2*a(n-1) -a(n-2) -a(n-3) +2*a(n-4) -a(n-5) +2*a(n-6) -4*a(n-7) +2*a(n-8) +2*a(n-9) -4*a(n-10) +2*a(n-11) -a(n-12) +2*a(n-13) -a(n-14) -a(n-15) +2*a(n-16) -a(n-17). - R. J. Mathar, Jan 25 2011
G.f.: x*(x^14 +x^13 +16*x^12 +10*x^11 +47*x^10 -22*x^9 +61*x^8 +10*x^7 +88*x^6 +8*x^5 +43*x^4 -14*x^3 +28*x^2 +7*x +4) / ((x -1)^4*(x +1)^3*(x^2 -x +1)^3*(x^2 +x +1)^2). - Colin Barker, Oct 27 2014

Extensions

Edited by R. J. Mathar, Aug 20 2009

A164578 Integers of the form (k+1)*(2k+1)/12.

Original entry on oeis.org

10, 23, 65, 94, 168, 213, 319, 380, 518, 595, 765, 858, 1060, 1169, 1403, 1528, 1794, 1935, 2233, 2390, 2720, 2893, 3255, 3444, 3838, 4043, 4469, 4690, 5148, 5385, 5875, 6128, 6650, 6919, 7473, 7758, 8344, 8645, 9263, 9580, 10230, 10563, 11245, 11594
Offset: 1

Views

Author

Keywords

Comments

This can also be defined as integer averages of the first k halved squares, 1^2/2, 2^2/2, 3^2/2,... , 3^k/2, because sum_{j=1..k} j^2/2 = k*(k+1)*(2k+1)/12. The generating k are in A168489.

Crossrefs

Programs

  • Mathematica
    s=0;lst={};Do[a=(s+=(n^2)/2)/n;If[Mod[a,1]==0,AppendTo[lst,a]],{n,2*6!}];lst
    Select[Table[((n+1)(2n+1))/12,{n,300}],IntegerQ] (* or *) LinearRecurrence[ {1,2,-2,-1,1},{10,23,65,94,168},60] (* Harvey P. Dale, Jun 14 2017 *)
  • PARI
    Vec(x*(10+13*x+22*x^2+3*x^3)/((1-x)^3*(1+x)^2) + O(x^100)) \\ Colin Barker, Jan 26 2016

Formula

a(n) = +a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) +a(n-5). G.f. x*(-10-13*x-22*x^2-3*x^3) / ((1+x)^2*(x-1)^3). - R. J. Mathar, Jan 25 2011
From Colin Barker, Jan 26 2016: (Start)
a(n) = (24*n^2+6*n-(-1)^n*(8*n+1)+1)/4.
a(n) = (12*n^2-n)/2 for n even.
a(n) = (12*n^2+7*n+1)/2 for n odd.
(End)

A164579 Integer averages of halves of first cubes of natural numbers (n^3)/2 for some n.

Original entry on oeis.org

6, 56, 81, 198, 480, 578, 950, 1656, 1875, 2646, 3968, 4356, 5670, 7800, 8405, 10406, 13536, 14406, 17238, 21560, 22743, 26550, 32256, 33800, 38726, 46008, 47961, 54150, 63200, 65610, 73206, 84216, 87131, 96278, 109440, 112908, 123750, 139256
Offset: 1

Views

Author

Keywords

Comments

Also, integers of the form (1/8)*n*(n+1)^2 for some n. - Zak Seidov, Aug 17 2009

Examples

			1/2, 9/4, 6, 25/2, 45/2, 147/4, 56, 81, ...
		

Crossrefs

Programs

  • Mathematica
    s=0;lst={};Do[a=(s+=(n^3)/2)/n;If[Mod[a,1]==0,AppendTo[lst,a]],{n,3*5!}];lst
    LinearRecurrence[{1,0,3,-3,0,-3,3,0,1,-1},{6,56,81,198,480,578,950,1656,1875,2646},40] (* Harvey P. Dale, Jul 26 2017 *)
    Module[{nn=200,ac},ac=Accumulate[Range[nn]^3/2];Select[#[[1]]/#[[2]]&/@ Thread[{ac,Range[nn]}],IntegerQ]] (* Harvey P. Dale, Jan 28 2020 *)
  • PARI
    forstep(n=3, 150, [4,1,3], print1(n*(n+1)^2>>3, ", ")); \\ Charles R Greathouse IV, Nov 02 2009

Formula

G.f.: ( x*(6+50*x+25*x^2+99*x^3+132*x^4+23*x^5+39*x^6+10*x^7) ) / ( (1+x+x^2)^3*(x-1)^4 ). - R. J. Mathar, Jan 25 2011
Showing 1-3 of 3 results.