A164619 Integers of the form A164577(k)/3.
4, 15, 54, 75, 132, 169, 320, 459, 735, 847, 1104, 1250, 1764, 2175, 2904, 3179, 3780, 4107, 5200, 6027, 7425, 7935, 9024, 9604, 11492, 12879, 15162, 15979, 17700, 18605, 21504, 23595, 26979, 28175, 30672, 31974, 36100, 39039, 43740, 45387, 48804
Offset: 1
Examples
A third of the average of the first cube, A164577(1)/3=1/3, is not an integer and does not contribute to the sequence. A third of the average of the first two cubes, A164577(2)/3=4, is an integer and defines a(1)=4 of the sequence.
Links
- Index entries for linear recurrences with constant coefficients, signature (2,-1,-1,2,-1,2,-4,2,2,-4,2,-1,2,-1,-1,2,-1).
Crossrefs
Programs
-
Mathematica
s=0;lst={};Do[a=(s+=(n^3)/3)/n;If[Mod[a,1]==0,AppendTo[lst,a]],{n,2*5!}]; lst LinearRecurrence[{2,-1,-1,2,-1,2,-4,2,2,-4,2,-1,2,-1,-1,2,-1},{4,15,54,75,132,169,320,459,735,847,1104,1250,1764,2175,2904,3179,3780},50] (* Harvey P. Dale, Apr 06 2016 *)
-
PARI
Vec(x*(x^14 +x^13 +16*x^12 +10*x^11 +47*x^10 -22*x^9 +61*x^8 +10*x^7 +88*x^6 +8*x^5 +43*x^4 -14*x^3 +28*x^2 +7*x +4) / ((x -1)^4*(x +1)^3*(x^2 -x +1)^3*(x^2 +x +1)^2) + O(x^100)) \\ Colin Barker, Oct 27 2014
Formula
a(n) = +2*a(n-1) -a(n-2) -a(n-3) +2*a(n-4) -a(n-5) +2*a(n-6) -4*a(n-7) +2*a(n-8) +2*a(n-9) -4*a(n-10) +2*a(n-11) -a(n-12) +2*a(n-13) -a(n-14) -a(n-15) +2*a(n-16) -a(n-17). - R. J. Mathar, Jan 25 2011
G.f.: x*(x^14 +x^13 +16*x^12 +10*x^11 +47*x^10 -22*x^9 +61*x^8 +10*x^7 +88*x^6 +8*x^5 +43*x^4 -14*x^3 +28*x^2 +7*x +4) / ((x -1)^4*(x +1)^3*(x^2 -x +1)^3*(x^2 +x +1)^2). - Colin Barker, Oct 27 2014
Extensions
Edited by R. J. Mathar, Aug 20 2009
Comments