cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164589 a(n) = ((4 + 3*sqrt(2))*(1 + 2*sqrt(2))^n + (4 - 3*sqrt(2))*(1 - 2*sqrt(2))^n)/8.

Original entry on oeis.org

1, 4, 15, 58, 221, 848, 3243, 12422, 47545, 182044, 696903, 2668114, 10214549, 39105896, 149713635, 573168542, 2194332529, 8400844852, 32162017407, 123129948778, 471394019405, 1804697680256, 6909153496347, 26451190754486, 101266455983401, 387691247248204
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009

Keywords

Comments

Binomial transform of A096886. Inverse binomial transform of A086347.

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((4+3*r)*(1+2*r)^n+(4-3*r)*(1-2*r)^n)/8: n in [0..23] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 24 2009
    
  • Mathematica
    CoefficientList[Series[(1+2x)/(1-2x-7x^2),{x,0,30}],x] (* or *) LinearRecurrence[{2,7},{1,4},30] (* Harvey P. Dale, Jun 22 2011 *)
  • PARI
    Vec((1+2*x)/(1-2*x-7*x^2)+O(x^99)) \\ Charles R Greathouse IV, Jul 16 2011

Formula

a(n) = 2*a(n-1) + 7*a(n-2) for n > 1; a(0) = 1, a(1) = 4.
G.f.: (1 + 2*x)/(1 - 2*x - 7*x^2).
E.g.f.: (1/4)*exp(x)*(4*cosh(2*sqrt(2)*x) + 3*sqrt(2)*sinh(2*sqrt(2)*x)). - G. C. Greubel, Aug 12 2017

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus and R. J. Mathar, Aug 24 2009