cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A164603 a(n) = ((1+4*sqrt(2))*(2+2*sqrt(2))^n + (1-4*sqrt(2))*(2-2*sqrt(2))^n)/2.

Original entry on oeis.org

1, 18, 76, 376, 1808, 8736, 42176, 203648, 983296, 4747776, 22924288, 110688256, 534450176, 2580553728, 12460015616, 60162277376, 290489171968, 1402605797376, 6772379877376, 32699942699008, 157889290305536
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009

Keywords

Comments

Binomial transform of A164602. Second binomial transform of A164702. Inverse binomial transform of A164604.

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+4*r)*(2+2*r)^n+(1-4*r)*(2-2*r)^n)/2: n in [0..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 23 2009
    
  • Mathematica
    CoefficientList[Series[(-1-14 n)/(-1+4 n+4 n^2),{n,0,20}],n]  (* Harvey P. Dale, Feb 22 2011 *)
  • PARI
    Vec((1+14*x)/(1-4*x-4*x^2)+O(x^99)) \\ Charles R Greathouse IV, Jun 12 2011

Formula

a(n) = 4*a(n-1) + 4*a(n-2) for n > 1; a(0) = 1, a(1) = 18.
G.f.: (1+14*x)/(1-4*x-4*x^2).
E.g.f.: exp(2*x)*( cosh(2*sqrt(2)*x) + 4*sqrt(2)*sinh(2*sqrt(2)*x) ). - G. C. Greubel, Aug 11 2017

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 23 2009

A164703 a(n) = 8*a(n-2) for n > 2; a(1) = 1, a(2) = 16.

Original entry on oeis.org

1, 16, 8, 128, 64, 1024, 512, 8192, 4096, 65536, 32768, 524288, 262144, 4194304, 2097152, 33554432, 16777216, 268435456, 134217728, 2147483648, 1073741824, 17179869184, 8589934592, 137438953472, 68719476736, 1099511627776
Offset: 1

Views

Author

Klaus Brockhaus, Aug 23 2009

Keywords

Comments

Interleaving of A001018 and 16*A001018.
Binomial transform is A164602.

Crossrefs

Cf. A001018 (powers of 8), A164602.

Programs

  • Magma
    [ n le 2 select 15*n-14 else 8*Self(n-2): n in [1..26] ];
  • Mathematica
    Riffle[#, 16*#] & [8^Range[0, 14]] (* or *)
    LinearRecurrence[{0, 8}, {1, 16}, 30] (* Paolo Xausa, Apr 22 2024 *)

Formula

a(n) = (3+(-1)^n)*2^(1/4*(6*n-7+3*(-1)^n)).
G.f.: x*(1+16*x)/(1-8*x^2).
Showing 1-2 of 2 results.