A164610 Number of reduced words of length n in Coxeter group on 13 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.
1, 13, 156, 1872, 22464, 269568, 3234816, 38817714, 465811632, 5589728430, 67076607312, 804917681568, 9658992904704, 115907683567104, 1390889427339126, 16690639822542972, 200287278204994266
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..920
- Index entries for linear recurrences with constant coefficients, signature (11,11,11,11,11,11,-66).
Programs
-
GAP
a:=[13,156,1872,22464,269568,3234816,38817714];; for n in [8..20] do a[n]:=11*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]+a[n-6]) -66*a[n-7]; od; Concatenation([1], a); # G. C. Greubel, Sep 15 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^7)/(1-12*t+77*t^7-66*t^8) )); // G. C. Greubel, Sep 15 2019 -
Maple
seq(coeff(series((1+t)*(1-t^7)/(1-12*t+77*t^7-66*t^8), t, n+1), t, n), n = 0..20); # G. C. Greubel, Sep 15 2019
-
Mathematica
CoefficientList[Series[(1+t)*(1-t^7)/(1-12*t+77*t^7-66*t^8), {t, 0, 20}], t] (* G. C. Greubel, Aug 10 2017 *) coxG[{7, 6, -11}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 15 2019 *)
-
PARI
my(t='t+O('t^20)); Vec((1+t)*(1-t^7)/(1-12*t+77*t^7-66*t^8)) \\ G. C. Greubel, Aug 10 2017
-
Sage
def A164610_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1+t)*(1-t^7)/(1-12*t+77*t^7-66*t^8)).list() A164610_list(20) # G. C. Greubel, Sep 15 2019
Formula
G.f.: (t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(66*t^7 - 11*t^6 - 11*t^5 - 11*t^4 - 11*t^3 - 11*t^2 - 11*t + 1).
a(n) = -66*a(n-7) + 11*Sum_{k=1..6} a(n-k). - Wesley Ivan Hurt, May 11 2021
Comments