cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164610 Number of reduced words of length n in Coxeter group on 13 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.

Original entry on oeis.org

1, 13, 156, 1872, 22464, 269568, 3234816, 38817714, 465811632, 5589728430, 67076607312, 804917681568, 9658992904704, 115907683567104, 1390889427339126, 16690639822542972, 200287278204994266
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170732, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[13,156,1872,22464,269568,3234816,38817714];; for n in [8..20] do a[n]:=11*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]+a[n-6]) -66*a[n-7]; od; Concatenation([1], a); # G. C. Greubel, Sep 15 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^7)/(1-12*t+77*t^7-66*t^8) )); // G. C. Greubel, Sep 15 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^7)/(1-12*t+77*t^7-66*t^8), t, n+1), t, n), n = 0..20); # G. C. Greubel, Sep 15 2019
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^7)/(1-12*t+77*t^7-66*t^8), {t, 0, 20}], t] (* G. C. Greubel, Aug 10 2017 *)
    coxG[{7, 6, -11}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 15 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((1+t)*(1-t^7)/(1-12*t+77*t^7-66*t^8)) \\ G. C. Greubel, Aug 10 2017
    
  • Sage
    def A164610_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^7)/(1-12*t+77*t^7-66*t^8)).list()
    A164610_list(20) # G. C. Greubel, Sep 15 2019
    

Formula

G.f.: (t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(66*t^7 - 11*t^6 - 11*t^5 - 11*t^4 - 11*t^3 - 11*t^2 - 11*t + 1).
a(n) = -66*a(n-7) + 11*Sum_{k=1..6} a(n-k). - Wesley Ivan Hurt, May 11 2021