A164539
a(n) = 2*a(n-1) + 7*a(n-2) for n > 1; a(0) = 1, a(1) = 13.
Original entry on oeis.org
1, 13, 33, 157, 545, 2189, 8193, 31709, 120769, 463501, 1772385, 6789277, 25985249, 99495437, 380887617, 1458243293, 5582699905, 21373102861, 81825105057, 313261930141, 1199299595681, 4591432702349, 17577962574465, 67295954065373
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+3*r)*(1+2*r)^n+(1-3*r)*(1-2*r)^n)/2: n in [0..23] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 20 2009
-
LinearRecurrence[{2,7},{1,13},50] (* Harvey P. Dale, Oct 16 2011 *)
A164540
a(n) = 4*a(n-1) + 4*a(n-2) for n > 1; a(0) = 1, a(1) = 14.
Original entry on oeis.org
1, 14, 60, 296, 1424, 6880, 33216, 160384, 774400, 3739136, 18054144, 87173120, 420909056, 2032328704, 9812951040, 47381118976, 228776280064, 1104629596160, 5333623504896, 25753012404224, 124346543636480, 600398224162816
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009
- Vincenzo Librandi, Table of n, a(n) for n = 0..164
- Martin Burtscher, Igor Szczyrba, RafaĆ Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Index entries for linear recurrences with constant coefficients, signature (4, 4).
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+3*r)*(2+2*r)^n+(1-3*r)*(2-2*r)^n)/2: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 20 2009
-
LinearRecurrence[{4,4},{1,14},30] (* Harvey P. Dale, Jul 18 2024 *)
A164541
a(n) = 6*a(n-1) - a(n-2) for n > 1; a(0) = 1, a(1) = 15.
Original entry on oeis.org
1, 15, 89, 519, 3025, 17631, 102761, 598935, 3490849, 20346159, 118586105, 691170471, 4028436721, 23479449855, 136848262409, 797610124599, 4648812485185, 27095264786511, 157922776233881, 920441392616775
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+3*r)*(3+2*r)^n+(1-3*r)*(3-2*r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 20 2009
-
LinearRecurrence[{6,-1},{1,15},20] (* Harvey P. Dale, Feb 04 2023 *)
A164542
a(n) = 8*a(n-1) - 8*a(n-2) for n > 1; a(0) = 1, a(1) = 16.
Original entry on oeis.org
1, 16, 120, 832, 5696, 38912, 265728, 1814528, 12390400, 84606976, 577732608, 3945005056, 26938179584, 183945396224, 1256057733120, 8576898695168, 58566727696384, 399918632009728, 2730815234506752, 18647172819976192
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+3*r)*(4+2*r)^n+(1-3*r)*(4-2*r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 20 2009
-
LinearRecurrence[{8,-8},{1,16},30] (* Harvey P. Dale, Jul 23 2018 *)
A164543
a(n) = 10*a(n-1) - 17*a(n-2) for n > 1; a(0) = 1, a(1) = 17.
Original entry on oeis.org
1, 17, 153, 1241, 9809, 76993, 603177, 4722889, 36974881, 289459697, 2266023993, 17739425081, 138871842929, 1087148202913, 8510660699337, 66625087543849, 521569643549761, 4083069947252177, 31964015532175833, 250227966218471321
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009
Showing 1-5 of 5 results.
Comments