A164603
a(n) = ((1+4*sqrt(2))*(2+2*sqrt(2))^n + (1-4*sqrt(2))*(2-2*sqrt(2))^n)/2.
Original entry on oeis.org
1, 18, 76, 376, 1808, 8736, 42176, 203648, 983296, 4747776, 22924288, 110688256, 534450176, 2580553728, 12460015616, 60162277376, 290489171968, 1402605797376, 6772379877376, 32699942699008, 157889290305536
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+4*r)*(2+2*r)^n+(1-4*r)*(2-2*r)^n)/2: n in [0..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 23 2009
-
CoefficientList[Series[(-1-14 n)/(-1+4 n+4 n^2),{n,0,20}],n] (* Harvey P. Dale, Feb 22 2011 *)
-
Vec((1+14*x)/(1-4*x-4*x^2)+O(x^99)) \\ Charles R Greathouse IV, Jun 12 2011
A164604
a(n) = ((1+4*sqrt(2))*(3+2*sqrt(2))^n + (1-4*sqrt(2))*(3-2*sqrt(2))^n)/2.
Original entry on oeis.org
1, 19, 113, 659, 3841, 22387, 130481, 760499, 4432513, 25834579, 150574961, 877615187, 5115116161, 29813081779, 173763374513, 1012767165299, 5902839617281, 34404270538387, 200522783613041, 1168732431139859
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+4*r)*(3+2*r)^n+(1-4*r)*(3-2*r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 23 2009
-
LinearRecurrence[{6,-1}, {1,19}, 50] (* G. C. Greubel, Aug 11 2017 *)
-
Vec((1+13*x)/(1-6*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Jun 12 2011
A164605
a(n) = ((1+4*sqrt(2))*(4+2*sqrt(2))^n + (1-4*sqrt(2))*(4-2*sqrt(2))^n)/2.
Original entry on oeis.org
1, 20, 152, 1056, 7232, 49408, 337408, 2304000, 15732736, 107429888, 733577216, 5009178624, 34204811264, 233565061120, 1594881998848, 10890535501824, 74365228023808, 507797540175872, 3467458497216512, 23677287656325120
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+4*r)*(4+2*r)^n+(1-4*r)*(4-2*r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 23 2009
-
LinearRecurrence[{8,-8},{1,20},30] (* Harvey P. Dale, Mar 24 2015 *)
-
Vec((1+12*x)/(1-8*x+8*x^2)+O(x^99)) \\ Charles R Greathouse IV, Jun 12 2011
A164606
a(n) = 10*a(n-1) - 17*a(n-2) for n > 1; a(0) = 1, a(1) = 21.
Original entry on oeis.org
1, 21, 193, 1573, 12449, 97749, 765857, 5996837, 46948801, 367541781, 2877288193, 22524671653, 176332817249, 1380408754389, 10806429650657, 84597347681957, 662264172758401, 5184486816990741, 40586377233014593, 317727496441303333
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+4*r)*(5+2*r)^n+(1-4*r)*(5-2*r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 23 2009
-
LinearRecurrence[{10,-17},{1,21},30] (* Harvey P. Dale, May 22 2013 *)
-
x='x+O('x^50); Vec((1+11*x)/(1-10*x+17*x^2)) \\ G. C. Greubel, Aug 10 2017
Showing 1-4 of 4 results.
Comments