A164705 T(n,k) = binomial(2n-k,n) * 2^(k-1), T(0,0)=1; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 1, 1, 3, 3, 2, 10, 10, 8, 4, 35, 35, 30, 20, 8, 126, 126, 112, 84, 48, 16, 462, 462, 420, 336, 224, 112, 32, 1716, 1716, 1584, 1320, 960, 576, 256, 64, 6435, 6435, 6006, 5148, 3960, 2640, 1440, 576, 128, 24310, 24310, 22880, 20020, 16016, 11440, 7040, 3520, 1280, 256
Offset: 0
Examples
T(2,1) = 3 because there are 3 length 4 binary sequences in which the third zero appears in the fourth position: {0,0,1,0}, {0,1,0,0}, {1,0,0,0}. Triangle begins 1; 1, 1; 3, 3, 2; 10, 10, 8, 4; 35, 35, 30, 20, 8; 126, 126, 112, 84, 48, 16; ...
Links
- Sean A. Irvine, Computing A382782, 2025.
Programs
-
Maple
T:= (n, k)-> ceil(binomial(2*n-k, n)*2^(k-1)): seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Apr 06 2025
-
Mathematica
Table[Table[Binomial[2 n - k, n]*2^(k - 1), {k, 0, n}], {n, 0, 9}] // Grid
Formula
Sum_{k=0..n} k * T(n,k) = A000531(n). - Alois P. Heinz, Apr 06 2025
Extensions
T(0,0)=1 prepended by Sean A. Irvine, Apr 05 2025
Comments