A164779 Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^8 = I.
1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829645, 430466400, 3874194000, 34867713600, 313809130800, 2824279552800, 25418492355600, 228766218624000, 2058894054430380, 18530029271219040, 166770108473225760
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8, 8, 8, 8, 8, 8, 8, -36).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^8)/(1-9*x+44*x^8-36*x^9) )); // G. C. Greubel, Apr 26 2019 -
Mathematica
coxG[{8,36,-8}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jun 13 2017 *) CoefficientList[Series[(1+x)*(1-x^8)/(1-9*x+44*x^8-36*x^9), {x,0,20}], x] (* G. C. Greubel, Apr 26 2019 *)
-
PARI
my(x='x+O('x^20)); Vec((1+x)*(1-x^8)/(1-9*x+44*x^8-36*x^9)) \\ G. C. Greubel, Apr 26 2019
-
Sage
((1+x)*(1-x^8)/(1-9*x+44*x^8-36*x^9)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019
Formula
G.f.: (t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 36*t^8 - 8*t^7 - 8*t^6 - 8*t^5 - 8*t^4 - 8*t^3 - 8*t^2 - 8*t + 1).
G.f.: (1+x)*(1-x^8)/(1 -9*x +44*x^8 -36*x^9). - G. C. Greubel, Apr 26 2019
Comments