cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164851 Generalized Lucas-Pascal triangle; (11*10^n, 1).

Original entry on oeis.org

1, 11, 1, 110, 12, 1, 1100, 122, 13, 1, 11000, 1222, 135, 14, 1, 110000, 12222, 1357, 149, 15, 1, 1100000, 122222, 13579, 1506, 164, 16, 1, 11000000, 1222222, 135801, 15085, 1670, 180, 17, 1
Offset: 0

Views

Author

Mark Dols, Aug 28 2009

Keywords

Examples

			Triangle begins:
         1;
        11,      1;
       110,     12,      1;
      1100,    122,     13,     1;
     11000,   1222,    135,    14,    1;
    110000,  12222,   1357,   149,   15,   1;
   1100000, 122222,  13579,  1506,  164,  16,  1;
  11000000,1222222, 135801, 15085, 1670, 180, 17, 1;
  ...
		

Crossrefs

Programs

  • Maple
    G[0]:= 1;
    G[1]:= 11+x;
    G[2]:= 110+12*x+x^2;
    for nn from 3 to 20 do
      G[nn]:= expand((x+11)*G[nn-1]-10*(x+1)*G[nn-2]);
    od:
    seq(seq(coeff(G[n],x,j),j=0..n),n=0..20); # Robert Israel, Jul 17 2017
  • Mathematica
    T[0, 0] := 1; T[n_, n_] := 1; T[n_, 0] := 11*10^(n - 1); T[n_, k_] := T[n - 1, k - 1] + T[n - 1, k];  Table[T[n, k], {n, 0, 10}, {k, 0, n}] //Flatten (* G. C. Greubel, Dec 22 2017 *)

Formula

T(0,0)=1, T(n+1,0)=11*10^n, T(n,n)=1, T(n,k)=T(n-1,k-1)+T(n-1,k) for 0Philippe Deléham, Dec 27 2013
G.f. as triangle: (1-x^2)/((1-10*x)*(1-x-x*y)). - Robert Israel, Jul 17 2017

Extensions

Initial 1 added by Philippe Deléham, Dec 27 2013