A164851 Generalized Lucas-Pascal triangle; (11*10^n, 1).
1, 11, 1, 110, 12, 1, 1100, 122, 13, 1, 11000, 1222, 135, 14, 1, 110000, 12222, 1357, 149, 15, 1, 1100000, 122222, 13579, 1506, 164, 16, 1, 11000000, 1222222, 135801, 15085, 1670, 180, 17, 1
Offset: 0
Examples
Triangle begins: 1; 11, 1; 110, 12, 1; 1100, 122, 13, 1; 11000, 1222, 135, 14, 1; 110000, 12222, 1357, 149, 15, 1; 1100000, 122222, 13579, 1506, 164, 16, 1; 11000000,1222222, 135801, 15085, 1670, 180, 17, 1; ...
Links
- Robert Israel, Table of n, a(n) for n = 0..10010(rows 0 to 140, flattened)
Programs
-
Maple
G[0]:= 1; G[1]:= 11+x; G[2]:= 110+12*x+x^2; for nn from 3 to 20 do G[nn]:= expand((x+11)*G[nn-1]-10*(x+1)*G[nn-2]); od: seq(seq(coeff(G[n],x,j),j=0..n),n=0..20); # Robert Israel, Jul 17 2017
-
Mathematica
T[0, 0] := 1; T[n_, n_] := 1; T[n_, 0] := 11*10^(n - 1); T[n_, k_] := T[n - 1, k - 1] + T[n - 1, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] //Flatten (* G. C. Greubel, Dec 22 2017 *)
Formula
T(0,0)=1, T(n+1,0)=11*10^n, T(n,n)=1, T(n,k)=T(n-1,k-1)+T(n-1,k) for 0Philippe Deléham, Dec 27 2013
G.f. as triangle: (1-x^2)/((1-10*x)*(1-x-x*y)). - Robert Israel, Jul 17 2017
Extensions
Initial 1 added by Philippe Deléham, Dec 27 2013