cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A225535 Numbers whose cubed digits sum to a cube, and have more than one nonzero digit.

Original entry on oeis.org

168, 186, 345, 354, 435, 453, 534, 543, 618, 681, 816, 861, 1068, 1086, 1156, 1165, 1516, 1561, 1608, 1615, 1651, 1680, 1806, 1860, 3045, 3054, 3405, 3450, 3504, 3540, 4035, 4053, 4305, 4350, 4503, 4530, 5034, 5043, 5116, 5161, 5304, 5340, 5403, 5430, 5611
Offset: 1

Views

Author

Keywords

Examples

			5^3 + 6^3 + 1^3 + 1^3 = 343, which is 7^3.
		

Crossrefs

Cf. A225534 (cubed digits sum to a prime), A197039 (square), A046459. A055012.
Cf. A165330 (cube cycle), A046197 (cubic fixed points), A000578 (cubes).
Cf. A052034 (squared digits sum to a prime), A028839, A117685.
Cf. A164882 (n such that sum of the cubes of the digits of n^3 is perfect cube). - Zak Seidov, May 21 2013

Programs

  • Mathematica
    fQ[n_] := Module[{d = IntegerDigits[n]}, Count[d, 0] + 1 < Length[d] && IntegerQ[Total[d^3]^(1/3)]]; Select[Range[5611], fQ] (* T. D. Noe, May 19 2013 *)
  • R
    y=rep(0,10000); len=0; x=0; library(gmp);
    digcubesum<-function(x) sum(as.numeric(unlist(strsplit(as.character(as.bigz(x)),split="")))^3);
    iscube<-function(x) ifelse(as.bigz(x)<2,T,all(table(as.numeric(factorize(x)))%%3==0));
    nonzerodig<-function(x) sum(strsplit(as.character(x),split="")[[1]]!="0");
    which(sapply(1:6000,function(x) nonzerodig(x)>1 & iscube(digcubesum(x))))
Showing 1-1 of 1 results.