A164899 Binomial matrix (1,10^n) read by antidiagonals.
1, 1, 10, 1, 11, 100, 1, 12, 110, 1000, 1, 13, 121, 1100, 10000, 1, 14, 133, 1210, 11000, 100000, 1, 15, 146, 1331, 12100, 110000, 1000000, 1, 16, 160, 1464, 13310, 121000, 1100000, 10000000, 1, 17, 175, 1610, 14641, 133100, 1210000, 11000000, 100000000
Offset: 1
Examples
Matrix array, A(n, k), begins: 1, 10, 100, 1000, ... 1, 11, 110, 1100, ... 1, 12, 121, 1210, ... 1, 13, 133, 1331, ... 1, 14, 146, 1464, ... 1, 15, 160, 1610, ... Antidiagonal triangle, T(n, k), begins as: 1; 1, 10; 1, 11, 100; 1, 12, 110, 1000; 1, 13, 121, 1100, 10000; 1, 14, 133, 1210, 11000, 100000; 1, 15, 146, 1331, 12100, 110000, 1000000;
Links
- G. C. Greubel, Antidiagonals n = 1..50, flattened
Programs
-
Magma
function T(n,k) // T = A164899 if k eq n then return 10^(n-1); elif k eq 1 then return 1; else return T(n-1,k) + T(n-2,k-1); end if; return T; end function; [T(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Feb 10 2023
-
Mathematica
T[n_, k_]:= T[n,k]= If[k==n, 10^(n-1), If[k==1, 1, T[n-1,k] +T[n-2, k-1]]]; Table[T[n, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Feb 10 2023 *)
-
SageMath
def T(n,k): # T = A164899 if (k==n): return 10^(n-1) elif (k==1): return 1 else: return T(n-1,k) + T(n-2,k-1) flatten([[T(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Feb 10 2023
Formula
Sum_{k=1..n} T(n, k) = A094704(n).
As a triangle T(n,k) read by rows, T(n,1) = 1, T(n,n) = 10^(n-1), and T(n,k) = T(n-1, k) + T(n-2, k-1) otherwise. - Joerg Arndt, Dec 10 2016
From G. C. Greubel, Feb 10 2023: (Start)
A(n, k) = A(n-1, k) + A(n-1, k-1), with A(n, 1) = 1 and A(1, k) = 10^(k-1) (array).
T(n, k) = A(n-k+1, k) (antidiagonal triangle). (End)