A164915 Inverse of binomial matrix (10^n,1) A164899. (See A164899 for companion sequence.)
1, 1, 10, 1, 9, 100, 1, 8, 90, 1000, 1, 7, 81, 900, 10000, 1, 6, 73, 810, 9000, 100000, 1, 5, 66, 729, 8100, 90000, 1000000, 1, 4, 60, 656, 7290, 81000, 900000, 10000000, 1, 3, 55, 590, 6561, 72900, 810000, 9000000, 100000000
Offset: 1
Examples
Matrix array, A(n, k), begins: 1, 10, 100, 1000, 10000, 100000, ... 1, 9, 90, 900, 9000, 90000, ... 1, 8, 81, 810, 8100, 81000, ... 1, 7, 73, 729, 7290, 72900, ... 1, 6, 66, 656, 6561, 65610, ... 1, 5, 60, 590, 5905, 59049, ... 1, 4, 55, 530, 5315, 53144, ... Antidiagonal triangle, T(n, k), begins as: 1; 1, 10; 1, 9, 100; 1, 8, 90, 1000; 1, 7, 81, 900, 10000; 1, 6, 73, 810, 9000, 100000; 1, 5, 66, 729, 8100, 90000, 1000000;
Links
- G. C. Greubel, Antidiagonals n = 1..50, flattened
Programs
-
Magma
function T(n,k) // T = A164915 if k eq n then return 10^(n-1); elif k eq 1 then return 1; else return T(n-1,k) - T(n-2,k-1); end if; return T; end function; [T(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Feb 10 2023
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==n, 10^(n-1), If[k==1, 1, T[n-1,k] - T[n-2, k -1]]]; Table[T[n, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Feb 10 2023 *)
-
SageMath
def T(n,k): # T = A164915 if (k==n): return 10^(n-1) elif (k==1): return 1 else: return T(n-1,k) - T(n-2,k-1) flatten([[T(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Feb 10 2023
Formula
From G. C. Greubel, Feb 10 2023: (Start)
A(n, k) = A(n-1, k) - A(n-1, k-1), with A(n, 1) = 1 and A(1, k) = 10^(k-1) (array).
T(n, k) = T(n-1, k) - T(n-2, k-1), with T(n, 1) = 1 and T(n, n) = 10^(n-1) (antidiagonal triangle).
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (1/109)*(4*Fibonacci(n) + 5*LucasL(n) + (-10)^(n+1)). (End)
Comments