A164981 A triangle with Pell numbers in the first column.
1, 2, 1, 5, 3, 1, 12, 10, 4, 1, 29, 30, 16, 5, 1, 70, 87, 56, 23, 6, 1, 169, 245, 185, 91, 31, 7, 1, 408, 676, 584, 334, 136, 40, 8, 1, 985, 1836, 1784, 1158, 546, 192, 50, 9, 1, 2378, 4925, 5312, 3850, 2052, 834, 260, 61, 10, 1, 5741, 13079, 15497, 12386, 7342, 3366, 1212, 341, 73, 11, 1
Offset: 1
Examples
Triangle begins 1 2,1 5,3,1 12,10,4,1 29,30,16,5,1 70,87,56,23,6,1 169,245,185,91,31,7,1 ... From _Philippe Deléham_, Oct 10 2013: (Start) Triangle (0, 2, 1/2, -1/2, 0, 0, ...) DELTA (1, 0, -1/2, 1/2, 0, 0, ...): 1 0, 1 0, 2, 1 0, 5, 3, 1 0, 12, 10, 4, 1 0, 29, 30, 16, 5, 1 0, 70, 87, 56, 23, 6, 1 0, 169, 245, 185, 91, 31, 7, 1 ... (End)
Programs
-
Maple
A164981 := proc(n,k) option remember; if n <1 or k<1 or k>n then 0; elif n = 1 then 1; else 2*procname(n-1,k)+procname(n-1,k-1)+procname(n-2,k)-procname(n-2,k-1) ; end if; end proc:
-
Mathematica
T[n_, k_] := T[n, k] = Which[n < 1 || k < 1 || k > n, 0, n == 1, 1, True, 2*T[n-1, k] + T[n-1, k-1] + T[n-2, k] - T[n-2, k-1]]; Table[T[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 06 2023 *)
-
PARI
T(n,k) = if ((n==1) && (k==1), return(1)); if ((n<=0) || (k<=0) || (n
Michel Marcus, Feb 01 2023
Formula
From R. J. Mathar, Jan 27 2011: (Start)
T(1,1) =1. T(n,k)=0 if n<1 or k<1 or k>n. T(n,k) = 2*T(n-1,k)+T(n-1,k-1)+T(n-2,k)-T(n-2,k-1) otherwise.
T(n,1) = A000129(n).
T(n,n-1) = n.
T(n,n-2) = A052905(n-2).
T(n,2) = A026937(n-2). (End)
G.f. x*y/(1-2*x-x^2+x^2*y-x*y). - R. J. Mathar, Aug 11 2015
Extensions
Rows 10-11 from Michel Marcus, Feb 01 2023
Comments