A164991 Number of triangular involutions of n. A triangular involution is a square involution with at most three faces.
1, 1, 3, 6, 13, 26, 54, 108, 221, 442, 898, 1796, 3634, 7268, 14668, 29336, 59101, 118202, 237834, 475668, 956198, 1912396, 3841588, 7683176, 15425138, 30850276, 61908564, 123817128, 248377156, 496754312
Offset: 1
References
- F. Disanto, A. Frosini, S. Rinaldi, Square Involutions, Proceedings of Permutation Patterns, July, 13-17 2009, Florence.
- T. Mansour, S. Severini, Grid polygons from permutations and their enumeration by the kernel method, 19th Conference on Formal Power Series and Algebraic Combinatorics, Tianjin, China, July 2-6, 2007.
Links
- F. Disanto, A. Frosini, S. Rinaldi, Square involutions, J. Int. Seq. 14 (2011) # 11.3.5.
- T. Mansour, S. Severini, Grid polygons from permutations and their enumeration by the kernel method, arXiv:math/0603225 [math.CO], 2006.
Programs
-
Mathematica
Join[{1},Table[2^(n-1)-Binomial[n-2,Floor[(n-2)/2]],{n,2,30}]] (* Harvey P. Dale, Dec 26 2015 *)
-
PARI
a(n) = 2^(n-1) - binomial(n-2, (n-2)\2) \\ Michel Marcus, May 27 2013
Formula
a(n) = 2^(n-1) - binomial(n-2, floor((n-2)/2)) for n>1, a(1)=1.
From Wolfdieter Lang, Jun 27 2015: (Start)
a(n) = Sum_{k = 1..2*n-3} A258445(n-1, k), n >= 2.
a(2*k+1) = 4*Sum_{j = 0..(k-2)} binomial(2*k-1,j) + 3*binomial(2*k-1,k-1), k >= 1.
a(2*k) = 4*Sum_{j = 0..(k-2)} binomial(2*(k-1),j) + binomial(2*(k-1),k-1), k >= 1. (End)
(-n+1)*a(n) + 2*(n-1)*a(n-1) + 4*(n-4)*a(n-2) + 8*(-n+4)*a(n-3) = 0. - R. J. Mathar, Aug 09 2017
Comments