A165190 G.f.: 1/((1-x^4)*(1-x^5)).
1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 4, 3, 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 5, 5, 4, 4, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 6
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- A. V. Kitaev and A. Vartanian, Algebroid Solutions of the Degenerate Third Painlevé Equation for Vanishing Formal Monodromy Parameter, arXiv:2304.05671 [math.CA], 2023. See p. 20.
- Index to Molien series
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,1,1,0,0,0,-1).
Programs
-
Magma
[Floor((n+4)/4) - Floor((n+4)/5) : n in [0..100]]; // Wesley Ivan Hurt, Aug 27 2015
-
Maple
A165190:=n->floor((n+4)/4) - floor((n+4)/5): seq(A165190(n), n=0..100); # Wesley Ivan Hurt, Aug 27 2015
-
Mathematica
CoefficientList[Series[1/((1-x^4)(1-x^5)),{x,0,110}],x] (* or *) LinearRecurrence[{0,0,0,1,1,0,0,0,-1},{1,0,0,0,1,1,0,0,1},110] (* Harvey P. Dale, Aug 16 2012 *) Table[Floor[(n + 4)/4] - Floor[(n + 4)/5], {n, 0, 100}] (* Wesley Ivan Hurt, Aug 27 2015 *)
Formula
1 followed by the Euler transform of the finite sequence [0,0,0,1,1].
G.f.: 1/((1-x)^2*(1+x)*(1+x^2)*(1+x+x^2+x^3+x^4)). [R. J. Mathar, Oct 07 2009]
a(0)=1, a(1)=0, a(2)=0, a(3)=0, a(4)=1, a(5)=1, a(6)=0, a(7)=0, a(8)=1, a(n) = a(n-4)+a(n-5)-a(n-9), n>8. - Harvey P. Dale, Aug 16 2012
a(n) = floor((n+4)/4) - floor((n+4)/5). - Wesley Ivan Hurt, Aug 27 2015
a(n)+a(n-2) = A008616(n). - R. J. Mathar, Jun 23 2021
Extensions
Removed duplicate of comment in A165188; Euler transform formula corrected - R. J. Mathar, Oct 07 2009
Comments