cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A211535 Number of ordered triples (w,x,y) with all terms in {1,...,n} and w=4x+5y.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 3, 3, 3, 4, 5, 6, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 23, 24, 25, 27, 29, 31, 32, 34, 36, 38, 40, 42, 44, 46, 48, 51, 53, 55, 57, 60, 63, 65, 67, 70, 73, 76, 78, 81, 84, 87, 90, 93, 96, 99, 102, 106, 109
Offset: 0

Views

Author

Clark Kimberling, Apr 15 2012

Keywords

Comments

For a guide to related sequences, see A211422.

Crossrefs

Programs

  • Mathematica
    t[n_] := t[n] = Flatten[Table[-w + 4 x + 5 y, {w, 1, n}, {x, 1, n}, {y, 1, n}]]
    c[n_] := Count[t[n], 0]
    t = Table[c[n], {n, 0, 70}]  (* A211535 *)
    FindLinearRecurrence[t]
    LinearRecurrence[{1,0,0,1,0,-1,0,0,-1,1},{0,0,0,0,0,0,0,0,0,1},71] (* Ray Chandler, Aug 02 2015 *)
  • PARI
    concat(vector(9), Vec(x^9 / ((1 - x)^3*(1 + x)*(1 + x^2)*(1 + x + x^2 + x^3 + x^4)) + O(x^100))) \\ Colin Barker, Dec 03 2017

Formula

a(n) = a(n-1) + a(n-4) - a(n-6) - a(n-9) + a(n-10).
G.f.: x^9 / ((1 - x)^3*(1 + x)*(1 + x^2)*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, Dec 03 2017
a(n)-a(n-1)=A165190(n-9). - R. J. Mathar, Jun 23 2021

A025802 Expansion of 1/((1-x^2)*(1-x^4)*(1-x^5)).

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 2, 1, 3, 2, 4, 2, 5, 3, 6, 4, 7, 5, 8, 6, 10, 7, 11, 8, 13, 10, 14, 11, 16, 13, 18, 14, 20, 16, 22, 18, 24, 20, 26, 22, 29, 24, 31, 26, 34, 29, 36, 31, 39, 34, 42, 36, 45, 39, 48, 42, 51, 45, 54, 48, 58, 51
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of partitions of n into parts 2, 4, and 5. - Hoang Xuan Thanh, Jun 18 2025

Crossrefs

Cf. A000115.

Programs

  • Mathematica
    CoefficientList[Series[1/((1-x^2)(1-x^4)(1-x^5)),{x,0,70}],x] (* Harvey P. Dale, Sep 15 2011 *)

Formula

From R. J. Mathar, Jun 23 2021: (Start)
a(n)-a(n-2) = A165190(n).
a(n)-a(n-4) = A008616(n). (End)
a(n) = floor((n^2 + n*(11+5*(-1)^n) + 53 + 27*(-1)^n)/80). - Hoang Xuan Thanh, Jun 18 2025
Showing 1-2 of 2 results.