A165202 Expansion of (1+x)/(1 - x + x^2)^2.
1, 3, 3, -1, -6, -6, 1, 9, 9, -1, -12, -12, 1, 15, 15, -1, -18, -18, 1, 21, 21, -1, -24, -24, 1, 27, 27, -1, -30, -30, 1, 33, 33, -1, -36, -36, 1, 39, 39, -1, -42, -42, 1, 45, 45, -1, -48, -48, 1, 51, 51, -1, -54, -54, 1, 57, 57, -1, -60, -60, 1
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-3,2,-1).
Programs
-
GAP
a:=[1,3,3,-1];; for n in [5..70] do a[n]:=2*a[n-1]-3*a[n-2]+ 2*a[n-3] -a[n-4]; od; a; # G. C. Greubel, Jul 18 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1+x)/(1-x+x^2)^2 )); // G. C. Greubel, Jul 18 2019 -
Mathematica
LinearRecurrence[{2,-3,2,-1}, {1,3,3,-1}, 70] (* G. C. Greubel, Jul 18 2019 *) (-1)^Quotient[#-1,3]{1,1+#,#}[[Mod[#,3,1]]]&/@Range[0, 10] (* Federico Provvedi, Jul 18 2021 *)
-
PARI
my(x='x+O('x^70)); Vec((1+x)/(1-x+x^2)^2) \\ G. C. Greubel, Jul 18 2019
-
Sage
((1+x)/(1-x+x^2)^2).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 18 2019
Formula
a(n) = cos(Pi*n/3) + sin(Pi*n/3)*(2n/3 + 1)*sqrt(3).