cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165202 Expansion of (1+x)/(1 - x + x^2)^2.

Original entry on oeis.org

1, 3, 3, -1, -6, -6, 1, 9, 9, -1, -12, -12, 1, 15, 15, -1, -18, -18, 1, 21, 21, -1, -24, -24, 1, 27, 27, -1, -30, -30, 1, 33, 33, -1, -36, -36, 1, 39, 39, -1, -42, -42, 1, 45, 45, -1, -48, -48, 1, 51, 51, -1, -54, -54, 1, 57, 57, -1, -60, -60, 1
Offset: 0

Views

Author

Paul Barry, Sep 07 2009

Keywords

Crossrefs

Cf. A100050 (first differences).
Hankel transform of A165201.

Programs

  • GAP
    a:=[1,3,3,-1];; for n in [5..70] do a[n]:=2*a[n-1]-3*a[n-2]+ 2*a[n-3] -a[n-4]; od; a; # G. C. Greubel, Jul 18 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1+x)/(1-x+x^2)^2 )); // G. C. Greubel, Jul 18 2019
    
  • Mathematica
    LinearRecurrence[{2,-3,2,-1}, {1,3,3,-1}, 70] (* G. C. Greubel, Jul 18 2019 *)
    (-1)^Quotient[#-1,3]{1,1+#,#}[[Mod[#,3,1]]]&/@Range[0, 10] (* Federico Provvedi, Jul 18 2021 *)
  • PARI
    my(x='x+O('x^70)); Vec((1+x)/(1-x+x^2)^2) \\ G. C. Greubel, Jul 18 2019
    
  • Sage
    ((1+x)/(1-x+x^2)^2).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 18 2019
    

Formula

a(n) = cos(Pi*n/3) + sin(Pi*n/3)*(2n/3 + 1)*sqrt(3).
a(n) = A099254(n) + A099254(n-1). - R. J. Mathar, May 02 2013