A165205 a(n) = C(2n-1,n) + C(2n+1,n+1) - C(0,n).
1, 4, 13, 45, 161, 588, 2178, 8151, 30745, 116688, 445094, 1704794, 6552378, 25258600, 97617060, 378098955, 1467343305, 5704370760, 22210199550, 86595896310, 338052201630, 1321178419080, 5168764845660, 20240517205350
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1+x)*(1-Sqrt(1-4*x))/(2*x*Sqrt(1-4*x)) )); // G. C. Greubel, Jul 18 2019 -
Mathematica
CoefficientList[Series[(1+x)*(1-Sqrt[1-4*x])/(2*x*Sqrt[1-4*x]), {x, 0, 30}], x] (* G. C. Greubel, Jul 18 2019 *) Table[Binomial[2n-1,n]+Binomial[2n+1,n+1]-Binomial[0,n],{n,0,30}] (* Harvey P. Dale, Apr 28 2022 *)
-
PARI
my(x='x+O('x^30)); Vec((1+x)*(1-sqrt(1-4*x))/(2*x*sqrt(1-4*x))) \\ G. C. Greubel, Jul 18 2019
-
Sage
a=((1+x)*(1-sqrt(1-4*x))/(2*x*sqrt(1-4*x))).series(x, 30).coefficients(x, sparse=False); [1]+a[1:] # G. C. Greubel, Jul 18 2019
Formula
G.f.: (1+x)*C(x)^2/(1-x*C(x)^2) = (1+x)*(1 - sqrt(1-4*x))/(2*x* sqrt(1-4*x)), where C(x) is the g.f. of A000108.
Apparently (n+1)*(5*n-2) -2*(5*n+3)*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Oct 25 2012
Comments