cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165281 a(n) = (n+1)*(6*n^4 - 51*n^3 + 161*n^2 - 251*n + 251).

Original entry on oeis.org

251, 232, 243, 224, 475, 2376, 9107, 26368, 63099, 132200, 251251, 443232, 737243, 1169224, 1782675, 2629376, 3770107, 5275368, 7226099, 9714400, 12844251, 16732232, 21508243, 27316224, 34314875, 42678376, 52597107, 64278368, 77947099
Offset: 0

Views

Author

Paul Curtz, Sep 13 2009

Keywords

Comments

The sequence is the numerators of the fifth column of the array on page 56 of the reference. The denominators are A091137(4)=720.
The sequence is the binomial transform of the quasi-finite 251, -19, 30, -60, 360, 720, 0, 0, 0, 0, ...
The fifth differences are (constant) 720; the fourth differences are 720*n + 360.

References

  • P. Curtz, Integration numerique des systemes differentiels a conditions initiales, C.C.S.A., Arcueil, 1969.

Crossrefs

Programs

  • Magma
    [(n+1)*(6*n^4-51*n^3+161*n^2-251*n+251): n in [0..30]]; // Vincenzo Librandi, Aug 07 2011
  • Mathematica
    Table[(n+1)(6n^4-51n^3+161n^2-251n+251),{n,0,30}] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{251,232,243,224,475,2376},30] (* Harvey P. Dale, Aug 20 2014 *)

Formula

a(n) mod 10 = A010879(n+1).
a(n+1) - a(n) = A157411(n).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
G.f.: ( 251 - 1274*x + 2616*x^2 - 2774*x^3 + 1901*x^4 ) / (x-1)^6. - R. J. Mathar, Jul 06 2011