cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165407 Expansion of 1/(1-x-x^3*c(x^3)), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 7, 11, 16, 27, 43, 65, 108, 173, 267, 440, 707, 1105, 1812, 2917, 4597, 7514, 12111, 19196, 31307, 50503, 80380, 130883, 211263, 337284, 548547, 885831, 1417582, 2303413, 3720995, 5965622, 9686617, 15652239, 25130844, 40783083, 65913927
Offset: 0

Views

Author

Paul Barry, Sep 17 2009

Keywords

Comments

Hankel transform is A010892(n+1).
Row sums of A165408.
Number of UF-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are UF-equivalent iff the positions of pattern UF are identical in these paths. This also works for the pattern FU. - Sergey Kirgizov, Apr 08 2018
a(n) is the total number of lattice paths from (0,0) to (n-2*i,i) that do not go above the diagonal x=y using steps in {(1,0), (0,1)}. - Alois P. Heinz, Sep 20 2022

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 50); Coefficients(R!( (Sqrt(1-4*x^3) -1+2*x)/(2*x*(1-x-x^2)) )); // G. C. Greubel, Nov 09 2022
    
  • Maple
    b:= proc(x, y) option remember; `if`(y<=x, `if`(x=0, 1,
          b(x-1, y)+`if`(y>0, b(x, y-1), 0)), 0)
        end:
    a:= n-> add(b(n-2*i, i), i=0..n/3):
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 20 2022
  • Mathematica
    b[x_, y_]:= b[x, y]= If[y<=x, If[x==0, 1, b[x-1, y] +If[y>0, b[x, y-1], 0]], 0];
    a[n_] := Sum[b[n-2*i, i], {i, 0, n/3}];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 08 2022, after Alois P. Heinz *)
    CoefficientList[Series[(Sqrt[1-4*x^3] -1+2*x)/(2*x*(1-x-x^2)), {x,0,50}], x] (* G. C. Greubel, Nov 09 2022 *)
  • SageMath
    def A165407_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 2/(1-2*x+sqrt(1-4*x^3)) ).list()
    A165407_list(50) # G. C. Greubel, Nov 09 2022

Formula

G.f.: 2/(1 - 2*x + sqrt(1-4*x^3)) = 1/(1-x-x^3/(1-x^3/(1-x^3/(1-x^3/(1-.... (continued fraction).
a(n) = Sum_{k=ceiling(n/3)..n} C((n+k)/2,k)*((3*k-n)/2 + 1)*(1+(-1)^(n-k))/(2*(k+1)).
a(n) = Sum_{k=0..n+1} Fibonacci(n-k+1)*(0^k - A000108((k-2)/3)*(1+2*cos(2*Pi*(k-2)/3))/3).
(n+1)*a(n) = (n+1)*a(n-1) + (n+1)*a(n-2) +2*(2*n-7)*a(n-3) -2*(2*n-7)*a(n-4) -2*(2*n-7)*a(n-5). - R. J. Mathar, Nov 15 2011
a(3*n) = A026726(n); a(3*n+1) = A026671(n); a(3*n+2) = A026674(n+1). - Philippe Deléham, Feb 01 2014
Limit_{n->oo} a(n+1)/a(n) = A001622. - Alois P. Heinz, Sep 15 2022