cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A078887 Decimal expansion of Sum {n>=0} 1/6^(2^n).

Original entry on oeis.org

1, 9, 5, 2, 1, 6, 6, 4, 4, 7, 5, 7, 2, 5, 1, 2, 8, 4, 9, 2, 5, 1, 0, 5, 1, 0, 6, 3, 5, 1, 5, 2, 1, 9, 4, 8, 4, 3, 2, 2, 4, 3, 4, 6, 8, 9, 9, 3, 2, 0, 3, 7, 2, 9, 8, 0, 7, 9, 2, 3, 1, 7, 4, 2, 6, 7, 3, 0, 3, 5, 8, 8, 3, 7, 2, 1, 2, 7, 6, 9, 0, 9, 0, 0, 4, 8, 7, 8, 5, 6, 1, 4, 9, 1, 6, 2, 4, 4, 6, 3, 1, 3, 6, 2, 1
Offset: 0

Views

Author

Robert G. Wilson v, Dec 11 2002

Keywords

Examples

			0.195216644757251284925...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ N[ Sum[1/6^(2^n), {n, 0, Infinity}], 110]][[1]]
  • PARI
    suminf(n=0, 1/6^(2^n)) \\ Michel Marcus, Nov 11 2020

Formula

Equals -Sum_{k>=1} mu(2*k)/(6^k - 1), where mu is the Möbius function (A008683). - Amiram Eldar, Jul 12 2020

A173501 a(1) = 2, a(2) = 3, a(n) = 6^(2^(n-3)) for n >= 3.

Original entry on oeis.org

2, 3, 6, 36, 1296, 1679616, 2821109907456, 7958661109946400884391936, 63340286662973277706162286946811886609896461828096
Offset: 1

Views

Author

Giovanni Teofilatto, Feb 20 2010

Keywords

Comments

Except for first three terms, a(n) = (a(n-1))^2.
Essentially the same as A165424. - R. J. Mathar, Feb 21 2010

Crossrefs

Programs

  • Mathematica
    Table[If[n<3, n+1, 6^(2^(n-3))], {n,10}] (* G. C. Greubel, Apr 25 2021 *)
  • PARI
    a(n) = if(n<=2, n+1, 6^(2^(n-3))) \\ Felix Fröhlich, Apr 25 2021
  • SageMath
    [2,3]+[6^(2^(n-3)) for n in (3..10)] # G. C. Greubel, Apr 25 2021
    

Formula

a(n) = Product_{i=1..n-1} a(i) with a(1) = 2 and a(2) = 3.
a(n) = 6^(2^(n-3)) = A000400(A000079(n-3)) for n>2.

Extensions

Definition corrected by Glenn Tesler, Aug 19 2017

A225158 Denominators of the sequence of fractions f(n) defined recursively by f(1) = 6/1; f(n+1) is chosen so that the sum and the product of the first n terms of the sequence are equal.

Original entry on oeis.org

1, 5, 31, 1141, 1502761, 2555339110801, 7279526598745139799221281, 58396508924557918552199410007906486608310469119041, 3723292553725227196293782783863296586090351965218332181732394788182320381276998127547535467381368961
Offset: 1

Views

Author

Martin Renner, Apr 30 2013

Keywords

Comments

Numerators of the sequence of fractions f(n) is A165424(n+1), hence sum(A165424(i+1)/a(i),i=1..n) = product(A165424(i+1)/a(i),i=1..n) = A165424(n+2)/A225165(n) = A173501(n+2)/A225165(n).

Examples

			f(n) = 6, 6/5, 36/31, 1296/1141, ...
6 + 6/5 = 6 * 6/5 = 36/5; 6 + 6/5 + 36/31 = 6 * 6/5 * 36/31 = 1296/155; ...
		

Crossrefs

Programs

  • Maple
    b:=n->6^(2^(n-2)); # n > 1
    b(1):=6;
    p:=proc(n) option remember; p(n-1)*a(n-1); end;
    p(1):=1;
    a:=proc(n) option remember; b(n)-p(n); end;
    a(1):=1;
    seq(a(i),i=1..9);

Formula

a(n) = 6^(2^(n-2)) - product(a(i),i=1..n-1), n > 1 and a(1) = 1.
a(n) = 6^(2^(n-2)) - p(n) with a(1) = 1 and p(n) = p(n-1)*a(n-1) with p(1) = 1.

A225165 Denominators of the sequence s(n) of the sum resp. product of fractions f(n) defined recursively by f(1) = 6/1; f(n+1) is chosen so that the sum and the product of the first n terms of the sequence are equal.

Original entry on oeis.org

1, 5, 155, 176855, 265770796655, 679134511201261085170655, 4943777738415359153962876938905400001585992709055
Offset: 1

Views

Author

Martin Renner, Apr 30 2013

Keywords

Comments

Numerators of the sequence s(n) of the sum resp. product of fractions f(n) is A165424(n+2), hence sum(A165424(i+1)/A225158(i),i=1..n) = product(A165424(i+1)/A225158(i),i=1..n) = A165424(n+2)/a(n) = A173501(n+2)/a(n).

Examples

			f(n) = 6, 6/5, 36/31, 1296/1141, ...
6 + 6/5 = 6 * 6/5 = 36/5; 6 + 6/5 + 36/31 = 6 * 6/5 * 36/31 = 1296/155; ...
s(n) = 1/b(n) = 6, 36/5, 1296/155, ...
		

Crossrefs

Programs

  • Maple
    b:=proc(n) option remember; b(n-1)-b(n-1)^2; end:
    b(1):=1/6;
    a:=n->6^(2^(n-1))*b(n);
    seq(a(i),i=1..8);

Formula

a(n) = 6^(2^(n-1))*b(n) where b(n)=b(n-1)-b(n-1)^2 with b(1)=1/6.
Showing 1-4 of 4 results.